63 research outputs found

    Transmittance, Reflectance and Emission Spectroscopy of Meteorites from the IV to the IR Spectral Range

    Get PDF
    In the last decade the Planetary Emissivity Laboratory (PEL) of DLR in Berlin has provided spec-tral measurements of planetary analogues from the visible to the far-infrared range for comparison with remote sens-ing spacecraft/telescopic measurements of planetary surfaces [1-5]. Bi-directional reflection, transmission and emis-sion spectroscopy are the techniques we used to acquire spectral data of target materials. In fall 2015 we started upgrading our laboratory set-up, adding a new spectrometer, three external sources, and new detectors and beamsplitters to further extend the spectral range of measurements that can be performed in the laboratory. Reflecting the wider scope of measurement capabilities the facility was renamed to Planetary Spectros-copy Laboratory (PSL). Two FTIR instruments are operating at PSL, in an air-conditioned room. The spectrometers are two Bruker Ver-tex 80V that can be evacuated to ~.1 mbar. One spectrometer is equipped with aluminum mirrors optimized for the UV, visible and near-IR, the second features gold-coated mirrors for the near to far IR spectral range. Apart from the mirrors the two instruments are identical, and can therefore share the collection of detectors and beamsplitters we have in our equipment to cover a very wide spectral range. The instruments and the accessory units used are fully automatized and the data calibration and reduction are made with software developed at DLR[4]. By using several pairings of detector+beamsplitter we can perform spectral measurements in the whole spectral range from 0.2 to 200 ÎĽm

    Morphometric analysis of a fresh simple crater on the Moon

    Get PDF
    In this research we are proposing an innovative method to determine and quantify the morphology of a simple fresh impact crater. Linné is a well preserved impact crater of 2.2 km in diameter, located at 27.7oN 11.8oE, near the western edge of Mare Serenitatis on the Moon. The crater was photographed by the Lunar Orbiter and the Apollo space missions. Its particular morphology may place Linné as the most striking example of small fresh simple crater. Morphometric analysis, conducted on recent high resolution DTM from LROC (NASA), quantitatively confirmed the pristine morphology of the crater, revealing a clear inner layering which highlight a sequence of lava emplacement events

    A Kalman filter single point positioning for maritime applications using a smartphone

    Get PDF
    Different positioning techniques have been largely adopted for maritime applications that require high accuracy kinematic positioning. The main objective of the paper is the performance assessment of a Single Point Positioning algorithm (SPP), with a Kalman filter (KF) estimator, adapted for maritime applications. The KF has been chosen as estimation technique due to the ability to consider both the state vector dynamic and the measurements. Particularly, in order to compute an accurate vertical component of the position, suitable for maritime applications, the KF settings have been modified by tuning the covariance matrix of the process noise. The algorithm is developed in Matlab environment and tested using multi-GNSS single-frequency raw data, collected by a smartphone located on board a moving ship. The algorithm performance evaluation is carried out in position domain and the results show an enhancement of meter order on vertical component compared to the classical SPP based on Least Square estimation technique. In addition, different GNSSs configurations are considered to verify the benefits of their integration in terms of accuracy, solution availability and geometry

    Sea state monitoring by ship motion measurements onboard a research ship in the antarctic waters

    Get PDF
    A parametric wave spectrum resembling procedure is applied to detect the sea state parameters, namely the wave peak period and significant wave height, based on the measurement and analysis of the heave and pitch motions of a vessel in a seaway, recorded by a smartphone located onboard the ship. The measurement system makes it possible to determine the heave and pitch acceleration spectra of the reference ship in the encounter frequency domain and, subsequently, the absolute sea spectra once the ship motion transfer functions are provided. The measurements have been carried out onboard the research ship “Laura Bassi”, during the oceanographic campaign in the Antarctic Ocean carried out in January and February 2020. The resembled sea spectra are compared with the weather forecast data, provided by the global-WAM (GWAM) model, in order to validate the sea spectrum resembling procedure

    The effects of the target material properties and layering on the crater chronology: the case of Raditladi and Rachmaninoff basins on Mercury

    Full text link
    In this paper we present a crater age determination of several terrains associated with the Raditladi and Rachmaninoff basins. These basins were discovered during the first and third MESSENGER flybys of Mercury, respectively. One of the most interesting features of both basins is their relatively fresh appearance. The young age of both basins is confirmed by our analysis on the basis of age determination via crater chronology. The derived Rachmaninoff and Raditladi basin model ages are about 3.6 Ga and 1.1 Ga, respectively. Moreover, we also constrain the age of the smooth plains within the basins' floors. This analysis shows that Mercury had volcanic activity until recent time, possibly to about 1 Ga or less. We find that some of the crater size-frequency distributions investigated suggest the presence of a layered target. Therefore, within this work we address the importance of considering terrain parameters, as geo-mechanical properties and layering, into the process of age determination. We also comment on the likelihood of the availability of impactors able to form basins with the sizes of Rachmaninoff and Raditladi in relatively recent times.Comment: Accepted by PSS, to appear on MESSENGER Flybys special issu

    The Impact of Railway Stations on Residential and Commercial Property Value: A Meta-analysis

    Get PDF
    Railway stations function as nodes in transport networks and places in an urban environment. They have accessibility and environmental impacts, which contribute to property value. The literature on the effects of railway stations on property value is mixed in its finding in respect to the impact magnitude and direction, ranging from a negative to an insignificant or a positive impact. This paper attempts to explain the variation in the findings by meta-analytical procedures. Generally the variations are attributed to the nature of data, particular spatial characteristics, temporal effects and methodology. Railway station proximity is addressed from two spatial considerations: a local station effect measuring the effect for properties with in 1/4 mile range and a global station effect measuring the effect of coming 250 m closer to the station. We find that the effect of railway stations on commercial property value mainly takes place at short distances. Commercial properties within 1/4 mile rang are 12.2% more expensive than residential properties. Where the price gap between the railway station zone and the rest is about 4.2% for the average residence, it is about 16.4% for the average commercial property. At longer distances the effect on residential property values dominate. We find that for every 250 m a residence is located closer to a station its price is 2.3% higher than commercial properties. Commuter railway stations have a consistently higher positive impact on the property value compared to light and heavy railway/Metro stations. The inclusion of other accessibility variables (such as highways) in the models reduces the level of reported railway station impact. © 2007 Springer Science+Business Media, LLC

    Effects of Impact and Target Parameters on the Results of a Kinetic Impactor: Predictions for the Double Asteroid Redirection Test (DART) Mission

    Get PDF
    The Double Asteroid Redirection Test (DART) spacecraft will impact into the asteroid Dimorphos on 2022 September 26 as a test of the kinetic impactor technique for planetary defense. The efficiency of the deflection following a kinetic impactor can be represented using the momentum enhancement factor, β, which is dependent on factors such as impact geometry and the specific target material properties. Currently, very little is known about Dimorphos and its material properties, which introduces uncertainty in the results of the deflection efficiency observables, including crater formation, ejecta distribution, and β. The DART Impact Modeling Working Group (IWG) is responsible for using impact simulations to better understand the results of the DART impact. Pre-impact simulation studies also provide considerable insight into how different properties and impact scenarios affect momentum enhancement following a kinetic impact. This insight provides a basis for predicting the effects of the DART impact and the first understanding of how to interpret results following the encounter. Following the DART impact, the knowledge gained from these studies will inform the initial simulations that will recreate the impact conditions, including providing estimates for potential material properties of Dimorphos and β resulting from DART’s impact. This paper summarizes, at a high level, what has been learned from the IWG simulations and experiments in preparation for the DART impact. While unknown, estimates for reasonable potential material properties of Dimorphos provide predictions for β of 1–5, depending on end-member cases in the strength regime

    Intracellular Trafficking of Guanylate-Binding Proteins Is Regulated by Heterodimerization in a Hierarchical Manner

    Get PDF
    Guanylate-binding proteins (GBPs) belong to the dynamin family of large GTPases and represent the major IFN-Îł-induced proteins. Here we systematically investigated the mechanisms regulating the subcellular localization of GBPs. Three GBPs (GBP-1, GBP-2 and GBP-5) carry a C-terminal CaaX-prenylation signal, which is typical for small GTPases of the Ras family, and increases the membrane affinity of proteins. In this study, we demonstrated that GBP-1, GBP-2 and GBP-5 are prenylated in vivo and that prenylation is required for the membrane association of GBP-1, GBP-2 and GBP-5. Using co-immunoprecipitation, yeast-two-hybrid analysis and fluorescence complementation assays, we showed for the first time that GBPs are able to homodimerize in vivo and that the membrane association of GBPs is regulated by dimerization similarly to dynamin. Interestingly, GBPs could also heterodimerize. This resulted in hierarchical positioning effects on the intracellular localization of the proteins. Specifically, GBP-1 recruited GBP-5 and GBP-2 into its own cellular compartment and GBP-5 repositioned GBP-2. In addition, GBP-1, GBP-2 and GBP-5 were able to redirect non-prenylated GBPs to their compartment in a prenylation-dependent manner. Overall, these findings prove in vivo the ability of GBPs to dimerize, indicate that heterodimerization regulates sub-cellular localization of GBPs and underscore putative membrane-associated functions of this family of proteins
    • …
    corecore