1,259 research outputs found

    Neural Induction in Xenopus: Requirement for Ectodermal and Endomesodermal Signals via Chordin, Noggin, β-Catenin, and Cerberus

    Get PDF
    The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early β-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator β-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula β-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer

    Different patterns of lung recruitment maneuvers in primary acute respiratory distress syndrome: effects on oxygenation and central hemodynamics.

    Get PDF

    Optical Spectroscopy of the IRAS 1-Jy Sample of Ultraluminous Infrared Galaxies

    Get PDF
    This paper discusses the optical spectroscopic properties of the IRAS 1-Jy sample of ultraluminous infrared galaxies (ULIGs). One hundred and eight of the 118 1-Jy ULIGs have been observed at dlambda = 8.3 AA resolution over the wavelength range ~4500 A -- 8900 A. These data are combined with large, previously published sets of optical spectroscopic data of lower luminosity infrared galaxies to look for systematic trends with infrared luminosity over the luminosity range L_ir ~ 10^{10.5}-10^{13} L_sun. As found in previous studies, the fraction of Seyfert galaxies among luminous infrared galaxies increases abruptly above L_ir ~ 10^{12.3} L_sun --- about 50% of the galaxies with L_ir > 10^{12.3} L_sun present Seyfert characteristics. Many of the optical and infrared spectroscopic properties of the Seyfert galaxies are consistent with the presence of a genuine active galactic nucleus (AGN). About 30% of these galaxies are Seyfert 1s with broad-line regions similar to those of optical quasars. The percentage of Seyfert 1 ULIGs increases with infrared luminosity, contrary to the predictions of the standard unification model for Seyfert galaxies. Comparisons of the broad-line luminosities of optical and obscured Seyfert 1 ULIGs with those of optically selected quasars of comparable bolometric luminosity suggest that the dominant energy source in most of these ULIGs is the same as in optical quasars, namely mass accretion onto a supermassive black hole, rather than a starburst. These results are consistent with recently published ISO, ASCA, and VLBI data. (abridged)Comment: Text and 23 figures (45 pages), Tables 1 - 6 (16 pages

    Mad Is Required for Wingless Signaling in Wing Development and Segment Patterning in Drosophila

    Get PDF
    A key question in developmental biology is how growth factor signals are integrated to generate pattern. In this study we investigated the integration of the Drosophila BMP and Wingless/GSK3 signaling pathways via phosphorylations of the transcription factor Mad. Wingless was found to regulate the phosphorylation of Mad by GSK3 in vivo. In epistatic experiments, the effects of Wingless on wing disc molecular markers (senseless, distalless and vestigial) were suppressed by depletion of Mad with RNAi. Wingless overexpression phenotypes, such as formation of ectopic wing margins, were induced by Mad GSK3 phosphorylation-resistant mutant protein. Unexpectedly, we found that Mad phosphorylation by GSK3 and MAPK occurred in segmental patterns. Mad depletion or overexpression produced Wingless-like embryonic segmentation phenotypes. In Xenopus embryos, segmental border formation was disrupted by Smad8 depletion. The results show that Mad is required for Wingless signaling and for the integration of gradients of positional information

    Minkowski's Object: A Starburst Triggered by a Radio Jet, Revisited

    Get PDF
    We present neutral hydrogen, ultraviolet, optical and near-infrared imaging, and optical spectroscopy, of Minkowski's Object (MO), a star forming peculiar galaxy near NGC 541. The observations strengthen evidence that star formation in MO was triggered by the radio jet from NGC 541. Key new results are the discovery of a 4.9E8 solar mass double HI cloud straddling the radio jet downstream from MO, where the jet changes direction and decollimates; strong detections of MO, also showing double structure, in UV and H-alpha; and numerous HII regions and associated clusters in MO. In UV, MO resembles the radio-aligned, rest-frame UV morphologies in many high redshift radio galaxies (HzRGs), also thought to be caused by jet-induced star formation. MO's stellar population is dominated by a 7.5 Myr-old, 1.9E7 solar mass instantaneous burst, with current star formation rate 0.52 solar masses per year (concentrated upstream from where the HI column density is high). This is unlike the jet-induced star formation in Centaurus A, where the jet interacts with pre-existing cold gas; in MO the HI may have cooled out of a warmer, clumpy intergalactic or interstellar medium as a result of jet interaction, followed by collapse of the cooling clouds and subsequent star formation (consistent with numerical simulations). Since the radio source that triggered star formation in MO is much less luminous, and therefore more common, than powerful HzRGs, and because the environment around MO is not particularly special in terms of abundant dense, cold gas, jet-induced star formation in the early universe might be even more prevalent than previously thought.Comment: 52 pages, 15 figures, accepted for publication in Ap

    Carbon in Spiral Galaxies from Hubble Space Telescope Spectroscopy

    Get PDF
    We present measurements of the gas-phase C/O abundance ratio in six H II regions in the spiral galaxies M101 and NGC 2403, based on ultraviolet spectroscopy using the Faint Object Spectrograph on the Hubble Space Telescope. The C/O ratios increase systematically with O/H in both galaxies, from log C/O approximately -0.8 at log O/H = -4.0 to log C/O approx. -0.1 at log O/H = -3.4. C/N shows no correlation with O/H. The rate of increase of C/O is somewhat uncertain because of uncertainty as to the appropriate UV reddening law, and uncertainty in the metallicity dependence on grain depletions. However, the trend of increasing C/O with O/H is clear, confirming and extending the trend in C/O indicated previously from observations of irregular galaxies. Our data indicate that the radial gradients in C/H across spiral galaxies are steeper than the gradients in O/H. Comparing the data to chemical evolution models for spiral galaxies shows that models in which the massive star yields do not vary with metallicity predict radial C/O gradients that are much flatter than the observed gradients. The most likely hypothesis at present is that stellar winds in massive stars have an important effect on the yields and thus on the evolution of carbon and oxygen abundances. C/O and N/O abundance ratios in the outer disks of spirals determined to date are very similar to those in dwarf irregular galaxies. This implies that the outer disks of spirals have average stellar population ages much younger than the inner disks.Comment: 38 pages, 9 postscript figures, uses aaspp4.sty. Accepted for publication in The Astrophysical Journa
    • …
    corecore