We present neutral hydrogen, ultraviolet, optical and near-infrared imaging,
and optical spectroscopy, of Minkowski's Object (MO), a star forming peculiar
galaxy near NGC 541. The observations strengthen evidence that star formation
in MO was triggered by the radio jet from NGC 541. Key new results are the
discovery of a 4.9E8 solar mass double HI cloud straddling the radio jet
downstream from MO, where the jet changes direction and decollimates; strong
detections of MO, also showing double structure, in UV and H-alpha; and
numerous HII regions and associated clusters in MO. In UV, MO resembles the
radio-aligned, rest-frame UV morphologies in many high redshift radio galaxies
(HzRGs), also thought to be caused by jet-induced star formation. MO's stellar
population is dominated by a 7.5 Myr-old, 1.9E7 solar mass instantaneous burst,
with current star formation rate 0.52 solar masses per year (concentrated
upstream from where the HI column density is high). This is unlike the
jet-induced star formation in Centaurus A, where the jet interacts with
pre-existing cold gas; in MO the HI may have cooled out of a warmer, clumpy
intergalactic or interstellar medium as a result of jet interaction, followed
by collapse of the cooling clouds and subsequent star formation (consistent
with numerical simulations). Since the radio source that triggered star
formation in MO is much less luminous, and therefore more common, than powerful
HzRGs, and because the environment around MO is not particularly special in
terms of abundant dense, cold gas, jet-induced star formation in the early
universe might be even more prevalent than previously thought.Comment: 52 pages, 15 figures, accepted for publication in Ap