118 research outputs found

    The magnetic field of M31 from multi-wavelength radio polarization observations

    Full text link
    The configuration of the regular magnetic field in M31 is deduced from radio polarization observations at the wavelengths 6, 11 and 20 cm. By fitting the observed azimuthal distribution of polarization angles, we find that the regular magnetic field, averaged over scales 1--3 kpc, is almost perfectly axisymmetric in the radial range 8 to 14 kpc, and follows a spiral pattern with pitch angles of p\simeq -19\degr to p\simeq -8\degr. In the ring between 6 and 8 kpc a perturbation of the dominant axisymmetric mode may be present, having the azimuthal wave number m=2. A systematic analysis of the observed depolarization allows us to identify the main mechanism for wavelength dependent depolarization -- Faraday rotation measure gradients arising in a magneto-ionic screen above the synchrotron disk. Modelling of the depolarization leads to constraints on the relative scale heights of the thermal and synchrotron emitting layers in M31; the thermal layer is found to be up to three times thicker than the synchrotron disk. The regular magnetic field must be coherent over a vertical scale at least similar to the scale height of the thermal layer, estimated to be h\therm\simeq 1 kpc. Faraday effects offer a powerful method to detect thick magneto-ionic disks or halos around spiral galaxies.Comment: 17 pages, 16 figures, accepted for publication in A&

    Magnetic fields and spiral arms in the galaxy M51

    Full text link
    (Abridged) We use new multi-wavelength radio observations, made with the VLA and Effelsberg telescopes, to study the magnetic field of the nearby galaxy M51 on scales from 200\pc to several \kpc. Interferometric and single dish data are combined to obtain new maps at \wwav{3}{6} in total and polarized emission, and earlier \wav{20} data are re-reduced. We compare the spatial distribution of the radio emission with observations of the neutral gas, derive radio spectral index and Faraday depolarization maps, and model the large-scale variation in Faraday rotation in order to deduce the structure of the regular magnetic field. We find that the \wav{20} emission from the disc is severely depolarized and that a dominating fraction of the observed polarized emission at \wav{6} must be due to anisotropic small-scale magnetic fields. Taking this into account, we derive two components for the regular magnetic field in this galaxy: the disc is dominated by a combination of azimuthal modes, m=0+2m=0+2, but in the halo only an m=1m=1 mode is required to fit the observations. We disuss how the observed arm-interarm contrast in radio intensities can be reconciled with evidence for strong gas compression in the spiral shocks. The average arm--interam contrast, representative of the radii r>2\kpc where the spiral arms are broader, is not compatible with straightforward compression: lower arm--interarm contrasts than expected may be due to resolution effects and \emph{decompression} of the magnetic field as it leaves the arms. We suggest a simple method to estimate the turbulent scale in the magneto-ionic medium from the dependence of the standard deviation of the observed Faraday rotation measure on resolution. We thus obtain an estimate of 50\pc for the size of the turbulent eddies.Comment: 21 pages, 18 figures (some at lower resolution than submitted version), accepted for publication in MNRA

    The distance to the SNR CTB109 deduced from its environment

    Full text link
    We conducted a study of the environment around the supernova remnant CTB109. We found that the SNR is part of a large complex of HII regions extending over an area of 400 pc along the Galactic plane at a distance of about 3 kpc at the closer edge of the Perseus spiral arm. At this distance CTB109 has a diameter of about 24 pc. We demonstrated that including spiral shocks in the distance estimation is an ultimate requirement to determine reliable distances to objects located in the Perseus arm. The most likely explanation for the high concentration of HII regions and SNRs is that the star formation in this part of the Perseus arm is triggered by the spiral shock.Comment: 6 pages, 6 figures. accepted for publication in the Astrophysical Journa

    Scaling and correlation analysis of galactic images

    Get PDF
    Different scaling and autocorrelation characteristics and their application to astronomical images are discussed: the structure function, the autocorrelation function, Fourier spectra and wavelet spectra. We recommend as the optimal mathematical tool the wavelet spectrum with a suitable choice of the analysing wavelet. We introduce the wavelet cross-correlation function which enables to study the correlation between images as a function of scale. The wavelet cross-correlation coefficient strongly depends on the scale. The classical cross-correlation coefficient can be misleading if a bright, extended central region or an extended disk exists in the galactic images. An analysis of the scaling and cross-correlation characteristics of 9 optical and radio maps of the nearby spiral galaxy NGC 6946 is presented. The wavelet spectra allow to separate structures on different scales like spiral arms and diffuse extended emission. Only the images of thermal radio emission and Halpha emission give indications of 3-dimensional Kolmogorov-type turbulence on the smallest resolved scales (160-800 pc). The cross-correlations between the images of NGC 6946 show strong similarities between the images of total radio emission, red light and mid-infrared dust emission on all scales. The best correlation is found between total radio emission and dust emission. Thermal radio continuum and Halpha emission are best correlated on a scale of about 1' \simeq 1.6 kpc, the typical width of a spiral arm. On a similar scale, the images of polarised radio and Halpha emission are anticorrelated, which remains undetected with classical ross-correlation analysis.Comment: 15 pages with 12 figures. Accepted for publication in MNRA

    Supernova Remnants in the Fossil Starburst in M82

    Full text link
    We report the discovery of ten compact H-alpha-bright sources in the post-starburst region northeast of the center of M82, ``M82 B.'' These objects have H alpha luminosities and sizes consistent with Type II supernova remnants (SNRs). They fall on the same H alpha surface brightness-diameter (Sigma-D) relation defined by SNRs in other nearby star-forming galaxies, with the M82 candidates lying preferentially at the small diameter end. These are the first candidates for optically-visible SNRs in M82 outside the heavily obscured central starburst within ~250 pc from the galactic center. If these sources are SNRs, they set an upper limit to the end of the starburst in region ``B2,'' about 500 pc from the galaxy's core, of ~50 Myr. Region ``B1,'' about 1000 pc from the core, lacks good SNR candidates and is evidently somewhat older. This suggests star formation in the galaxy has propagated inward toward the present-day intense starburst core.Comment: Re-submitted to AJ, referee's comments taken into account, 15 pages LaTeX preprint style, 4 postscript figures; full-resolution figures available from http://www.astro.virginia.edu/~rd7a/snrs/ Changes: minor textual changes and orientation/axes of Fig.

    OVI, NV and CIV in the Galactic Halo: II. Velocity-Resolved Observations with Hubble and FUSE

    Full text link
    We present a survey of NV and OVI (and where available CIV) in the Galactic halo, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope (HST) along 34 sightlines. These ions are usually produced in nonequilibrium processes such as shocks, evaporative interfaces, or rapidly cooling gas, and thus trace the dynamics of the interstellar medium. Searching for global trends in integrated and velocity-resolved column density ratios, we find large variations in most measures, with some evidence for a systematic trend of higher ionization (lower NV/OVI column density ratio) at larger positive line-of-sight velocities. The slopes of log[N(NV)/N(OVI)] per unit velocity range from -0.015 to +0.005, with a mean of -0.0032+/-0.0022(r)+/-0.0014(sys) dex/(km/s). We compare this dataset with models of velocity-resolved high-ion signatures of several common physical structures. The dispersion of the ratios, OVI/NV/CIV, supports the growing belief that no single model can account for hot halo gas, and in fact some models predict much stronger trends than are observed. It is important to understand the signatures of different physical structures to interpret specific lines of sight and future global surveys.Comment: ApJ in press 43 pages, 22 fig

    The Velocity Distribution of the Nearest Interstellar Gas

    Full text link
    The bulk flow velocity for the cluster of interstellar cloudlets within about 30 pc of the Sun is determined from optical and ultraviolet absorption line data, after omitting from the sample stars with circumstellar disks or variable emission lines and the active variable HR 1099. Ninety-six velocity components towards the remaining 60 stars yield a streaming velocity through the local standard of rest of -17.0+/-4.6 km/s, with an upstream direction of l=2.3 deg, b=-5.2 deg (using Hipparcos values for the solar apex motion). The velocity dispersion of the interstellar matter (ISM) within 30 pc is consistent with that of nearby diffuse clouds, but present statistics are inadequate to distinguish between a Gaussian or exponential distribution about the bulk flow velocity. The upstream direction of the bulk flow vector suggests an origin associated with the Loop I supernova remnant. Groupings of component velocities by region are seen, indicating regional departures from the bulk flow velocity or possibly separate clouds. The absorption components from the cloudlet feeding ISM into the solar system form one of the regional features. The nominal gradient between the velocities of upstream and downstream gas may be an artifact of the Sun's location near the edge of the local cloud complex. The Sun may emerge from the surrounding gas-patch within several thousand years.Comment: Typographical errors corrected; Five tables, seven figures; Astrophysical Journal, in pres

    Density probability distribution functions of diffuse gas in the Milky Way

    Full text link
    In a search for the signature of turbulence in the diffuse interstellar medium in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b|=5 degrees are considered separately. The PDF of at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter
    • …
    corecore