2,679 research outputs found

    PPARdelta as a novel target for osteoarthritis therapy

    Get PDF

    Mantle heterogeneity controls on small-volume basaltic volcanism: Reply

    Get PDF
    Artículo de publicación ISIEruptions of basaltic material in small-scale volcanic fields located in intraplate settings display a very diverse range in physical and chemical characteristics. Despite its relevance to the understanding of volcanic hazards, the relationship between physical properties of eruptions (explosivity, volume, location) and chemical composition of erupted products has, to date, not been investigated. Here we present a relationship between mantle heterogeneity and extents of partial melting, and both erupted volumes and eruptive style from the Auckland Volcanic Field (New Zealand), and we suggest that this provides a general model for small-scale "monogenetic" magmatic systems globally. Small volcanic centers consistently take the form of nephelinitic tuff rings and scoria cones, whereas larger centers are produced from effusive eruptions of less alkalic magmas. Nephelinitic melts are generated by melting of a deep, carbonated source, whereas less alkalic melts are the products of melting of a shallower, noncarbonated source. U-Th-Ra isotope data from eruptions closely paired in space and time show that mixing between magmas is extremely limited as a consequence of different ascent mechanisms due to differential segregation of melts from varying sources (early, carbonated melts ascending by higher porosity channels, and later, uncarbonated melts by a more diffusive regime). This suggests that extraction of melt is nearly instantaneous in these environments. Our results stress the importance of melting and magma dynamics in determining the size and style of eruptions in small volcanic fields, and suggest that mantle controls should be an important consideration in volcanic hazard assessment.Centro de Excelencia en Geotermia de los Andes (CEGA, Chile) by FONDAP (Fondo de Financiamiento de Centros de Investigacion en Areas Prioritarias) 1509001

    Recoil correction to the bound-electron g factor in H-like atoms to all orders in αZ\alpha Z

    Get PDF
    The nuclear recoil correction to the bound-electron g factor in H-like atoms is calculated to first order in m/Mm/M and to all orders in αZ\alpha Z. The calculation is performed in the range Z=1-100. A large contribution of terms of order (αZ)5(\alpha Z)^5 and higher is found. Even for hydrogen, the higher-order correction exceeds the (αZ)4(\alpha Z)^4 term, while for uranium it is above the leading (αZ)2(\alpha Z)^2 correction.Comment: 6 pages, 3 tables, 1 figur

    The Arteriovenous Loop: Engineering of Axially Vascularized Tissue

    Get PDF
    Background: Most of the current treatment options for large-scale tissue defects represent a serious burden for the patients, are often not satisfying, and can be associated with significant side effects. Although major achievements have already been made in the field of tissue engineering, the clinical translation in case of extensive tissue defects is only in its early stages. The main challenge and reason for the failure of most tissue engineering approaches is the missing vascularization within large-scale transplants. Summary: The arteriovenous (AV) loop model is an in vivo tissue engineering strategy for generating axially vascularized tissues using the own body as a bioreactor. A superficial artery and vein are anastomosed to create an AV loop. This AV loop is placed into an implantation chamber for prevascularization of the chamber inside, e.g., a scaffold, cells, and growth factors. Subsequently, the generated tissue can be transplanted with its vascular axis into the defect site and anastomosed to the local vasculature. Since the blood supply of the growing tissue is based on the AV loop, it will be immediately perfused with blood in the recipient site leading to optimal healing conditions even in the case of poorly vascularized defects. Using this tissue engineering approach, a multitude of different axially vascularized tissues could be generated, such as bone, skeletal or heart muscle, or lymphatic tissues. Upscaling from the small animal AV loop model into a preclinical large animal model could pave the way for the first successful attempt in clinical application. Key Messages: The AV loop model is a powerful tool for the generation of different axially vascularized replacement tissues. Due to minimal donor site morbidity and the possibility to generate patient-specific tissues variable in type and size, this in vivo tissue engineering approach can be considered as a promising alternative therapy to current treatment options of large-scale defects

    Technical Note: Mesocosm approach to quantify dissolved inorganic carbon percolation fluxes

    Get PDF
    Dissolved inorganic carbon (DIC) fluxes across the vadose zone are influenced by a complex interplay of biological, chemical and physical factors. A novel soil mesocosm system was evaluated as a tool for providing information on the mechanisms behind DIC percolation to the groundwater from unplanted soil. Carbon dioxide partial pressure (<i>p</i>CO<sub>2</sub>), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The <i>p</i>CO<sub>2</sub> varied between 0.2 and 1.1%, and the alkalinity was 0.1–0.6 meq L<sup>−1</sup>. The measured cumulative effluent DIC flux over the 78-day experimental period was 185–196 mg L<sup>−1</sup> m<sup>−2</sup> and in the same range as estimates derived from <i>p</i>CO<sub>2</sub> and alkalinity in samples extracted from the side of the mesocosm column and the drainage flux. Our results indicate that the mesocosm system is a promising tool for studying DIC percolation fluxes and other biogeochemical transport processes in unsaturated environments

    Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields

    Full text link
    The equivalence of the covariant renormalization and the partial-wave renormaliz ation (PWR) approach is proven explicitly for the one-loop self-energy correction (SE) of a bound electron state in the presence of external perturbation potentials. No spurious correctio n terms to the noncovariant PWR scheme are generated for Coulomb-type screening potentia ls and for external magnetic fields. It is shown that in numerical calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment of the unphysical high-energy contribution. A method for performing the PWR utilizing the relativistic B-spline approach for the construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied for calculating QED corrections to the bound-electron gg-factor in H-like ions. Within the level of accuracy of about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.Comment: 22 pages, LaTeX, 1 figur

    Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach

    Full text link
    The subset sum problem (SSP) can be briefly stated as: given a target integer EE and a set AA containing nn positive integer aja_j, find a subset of AA summing to EE. The \textit{density} dd of an SSP instance is defined by the ratio of nn to mm, where mm is the logarithm of the largest integer within AA. Based on the structural and statistical properties of subset sums, we present an improved enumeration scheme for SSP, and implement it as a complete and exact algorithm (EnumPlus). The algorithm always equivalently reduces an instance to be low-density, and then solve it by enumeration. Through this approach, we show the possibility to design a sole algorithm that can efficiently solve arbitrary density instance in a uniform way. Furthermore, our algorithm has considerable performance advantage over previous algorithms. Firstly, it extends the density scope, in which SSP can be solved in expected polynomial time. Specifically, It solves SSP in expected O(nlogn)O(n\log{n}) time when density dcn/lognd \geq c\cdot \sqrt{n}/\log{n}, while the previously best density scope is dcn/(logn)2d \geq c\cdot n/(\log{n})^{2}. In addition, the overall expected time and space requirement in the average case are proven to be O(n5logn)O(n^5\log n) and O(n5)O(n^5) respectively. Secondly, in the worst case, it slightly improves the previously best time complexity of exact algorithms for SSP. Specifically, the worst-case time complexity of our algorithm is proved to be O((n6)2n/2+n)O((n-6)2^{n/2}+n), while the previously best result is O(n2n/2)O(n2^{n/2}).Comment: 11 pages, 1 figur

    Changes of Sand Fly Populations and Leishmania infantum Infection Rates in an Irrigated Village Located in Arid Central Tunisia

    Get PDF
    Citation: Barhoumi, W., Fares, W., Cherni, S., Derbali, M., Dachraoui, K., Chelbi, I., . . . Zhioua, E. (2016). Changes of Sand Fly Populations and Leishmania infantum Infection Rates in an Irrigated Village Located in Arid Central Tunisia. International Journal of Environmental Research and Public Health, 13(3), 10. doi:10.3390/ijerph13030329The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL

    Charged Scalar Particles and τ\tau Leptonic Decay

    Full text link
    Charged scalar particles introduced in some extensions of the standard model can induce τ\tau leptonic decay at tree level. We find that with some charged SU(2)-singlet scalar particles, like ones introduced in Zee-type models, τ\tau leptonic decay width is always smaller than what is predicted by the standard model, therefore they may offer a natural solution to τ\tau decay puzzle. To be more specific, we examine some Zee-type models in detail to see if at the same time they are acceptable in particle physics, cosmology and astrophysics. It is shown that τ\tau decay data do put some constrains on these models.Comment: ICTP Report No. IC/93/31, 12 pages, Latex, one figure is not included, it is available upon deman
    corecore