1,532 research outputs found

    Pressure-induced hole doping of the Hg-based cuprate superconductors

    Full text link
    We investigate the electronic structure and the hole content in the copper-oxygen planes of Hg based high Tc cuprates for one to four CuO2 layers and hydrostatic pressures up to 15 GPa. We find that with the pressure-induced additional number of holes of the order of 0.05e the density of states at the Fermi level changes approximately by a factor of 2. At the same time the saddle point is moved to the Fermi level accompanied by an enhanced k_z dispersion. This finding explains the pressure behavior of Tc and leads to the conclusion that the applicability of the van Hove scenario is restricted. By comparison with experiment, we estimate the coupling constant to be of the order of 1, ruling out the weak coupling limit.Comment: 4 pages, 4 figure

    Right to Serve, Right to Lead: Lives and Legacies of the USCT

    Get PDF
    This is a catalog for an exhibit that follows the evolution of African-American participation in the Civil War, from slaves, to contrabands, to soldiers of the United States Colored Troops (USCT), as well as the lives of black veterans beyond the war, and their ultimate military and social legacy. Using a variety of period items, it creates a narrative that stretches from the Antebellum Period to the current day. In doing so, the exhibit shows how black sacrifice on the battlefield redefined the war\u27s purpose throughout the divided nation, how Jim Crowe suppressed the memory of black participation after Reconstruction, and how the illustrious African-American military tradition left by the USCT endures to this day in their modern heirs

    The mass, colour, and structural evolution of today's massive galaxies since z~5

    Get PDF
    In this paper, we use stacking analysis to trace the mass-growth, colour evolution, and structural evolution of present-day massive galaxies (log(M/M)=11.5\log(M_{*}/M_{\odot})=11.5) out to z=5z=5. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by 1.5 dex\approx1.5~\mathrm{dex} since z=5z=5. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by z2z\sim2, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build up at r4r4 probing an era of significant mass assembly in the interiors of present day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with zz at r<3 kpcr<3~\mathrm{kpc}. We identify z1.5z\sim1.5 as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in-situ star formation in disks to a period of efficient growth in rer_{e} consistent with the minor merger scenario.Comment: 19 pages, 14 figures, accepted for publicatio

    Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5<z<2.5

    Get PDF
    In this paper, we investigate the relationship between star formation and structure, using a mass-complete sample of 27,893 galaxies at 0.5<z<2.50.5<z<2.5 selected from 3D-HST. We confirm that star-forming galaxies are larger than quiescent galaxies at fixed stellar mass (M_{\star}). However, in contrast with some simulations, there is only a weak relation between star formation rate (SFR) and size within the star-forming population: when dividing into quartiles based on residual offsets in SFR, we find that the sizes of star-forming galaxies in the lowest quartile are 0.27±\pm0.06 dex smaller than the highest quartile. We show that 50% of star formation in galaxies at fixed M_{\star} takes place within a narrow range of sizes (0.26 dex). Taken together, these results suggest that there is an abrupt cessation of star formation after galaxies attain particular structural properties. Confirming earlier results, we find that central stellar density within a 1 kpc fixed physical radius is the key parameter connecting galaxy morphology and star formation histories: galaxies with high central densities are red and have increasingly lower SFR/M_{\star}, whereas galaxies with low central densities are blue and have a roughly constant (higher) SFR/M_{\star} at a given redshift. We find remarkably little scatter in the average trends and a strong evolution of >>0.5 dex in the central density threshold correlated with quiescence from z0.72.0z\sim0.7-2.0. Neither a compact size nor high-nn are sufficient to assess the likelihood of quiescence for the average galaxy; rather, the combination of these two parameters together with M_{\star} results in a unique quenching threshold in central density/velocity.Comment: 20 pages, 15 figures, and 2 tables; Accepted for publication in the Astrophysical Journa

    The Most Massive Galaxies at 3.0<z<4.0 in the NEWFIRM Medium-Band Survey: Properties and Improved Constraints on the Stellar Mass Function

    Get PDF
    [Abridged] We use the NEWFIRM Medium-Band Survey (NMBS) to characterize the properties of a mass-complete sample of 14 galaxies at 3.0<z<4.0 with M_star>2.5x10^11 Msun, and to derive more accurate measurements of the high-mass end of the stellar mass function (SMF) of galaxies at z=3.5, with significantly reduced contributions from photometric redshift errors and cosmic variance to the total error budget of the SMF. The typical very massive galaxy at z=3.5 is red and faint in the observer's optical, with median r=26.1, and rest-frame U-V=1.6. About 60% of the sample have optical colors satisfying either the U- or the B-dropout color criteria, although ~50% of these galaxies have r>25.5. About 30% of the sample has SFRs from SED modeling consistent with zero. However, >80% of the sample is detected at 24 micron, with total infrared luminosities in the range (0.5-4.0)x10^13 Lsun. This implies the presence of either dust-enshrouded starburst activity (with SFRs of 600-4300 Msun/yr) and/or highly-obscured active galactic nuclei (AGN). The contribution of galaxies with M_star>2.5x10^11 Msun to the total stellar mass budget at z=3.5 is ~8%. We find an evolution by a factor of 2-7 and 3-22 from z~5 and z~6, respectively, to z=3.5. The previously found disagreement at the high-mass end between observed and model-predicted SMFs is now significant at the 3sigma level. However, systematic uncertainties dominate the total error budget, with errors up to a factor of ~8 in the densities, bringing the observed SMF in marginal agreement with the predicted SMF. Additional systematic uncertainties on the high-mass end could be introduced by either 1) the intense star-formation and/or the very common AGN activities as inferred from the MIPS 24 micron detections, and/or 2) contamination by a significant population of massive, old, and dusty galaxies at z~2.6.Comment: 20 pages, 11 figures. Accepted in ApJ. Minor changes to colors of figures to match accepted versio

    Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z~2

    Get PDF
    Quiescent galaxies at z~2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically-quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hbeta (4861A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G-band (4304A), Mg I (5175A), and Na I (5894A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^0.1_0.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^0.5_0.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^0.2_0.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [OIII] and Hbeta emission. Interestingly, this emission is more centrally concentrated than the continuum with L_[OIII] = 1.7 +/- 0.3 x 10^40 erg s^-1, indicating residual central star formation or nuclear activity.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    Get PDF
    The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey (S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic variance and also to take advantage of deep coextensive coverage in multiple bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS, S-CANDELS was carried out within five widely separated extragalactic fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon the existing coverage of these fields from the Spitzer Extended Deep Survey (SEDS) by increasing the integration time from 12 hours to a total of 50 hours but within a smaller area, 0.16 square degrees. The additional depth significantly increases the survey completeness at faint magnitudes. This paper describes the S-CANDELS survey design, processing, and publicly-available data products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by S-CANDELS are consistent with models based on known galaxy populations. The increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a significant additional contribution from discrete sources to the diffuse Cosmic Infrared Background (CIB). Thus it remains true that only roughly half of the estimated CIB flux from COBE/DIRBE is resolved.Comment: 23 pages, 19 figures, accepted by ApJ

    The Rest-Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe from z=0 to z=3

    Get PDF
    We present the evolution of the rest-frame optical luminosity density, of the integrated rest-frame optical color, and of the stellar mass density for a sample of Ks-band selected galaxies in the HDF-S. We derived the luminosity density in the rest-frame U, B, and V-bands and found that the luminosity density increases by a factor of 1.9+-0.4, 2.9+-0.6, and 4.9+-1.0 in the V, B, and U rest-frame bands respectively between a redshift of 0.1 and 3.2. We derived the luminosity weighted mean cosmic (U-B)_rest and (B-V)_rest colors as a function of redshift. The colors bluen almost monotonically with increasing redshift; at z=0.1, the (U-B)_rest and (B-V)_rest colors are 0.16 and 0.75 respectively, while at z=2.8 they are -0.39 and 0.29 respectively. We derived the luminosity weighted mean M/LV using the correlation between (U-V)_rest and log_{10} M/LV which exists for a range in smooth SFHs and moderate extinctions. We have shown that the mean of individual M/LV estimates can overpredict the true value by ~70% while our method overpredicts the true values by only ~35%. We find that the universe at z~3 had ~10 times lower stellar mass density than it does today in galaxies with LV>1.4 \times 10^{10} h_{70}^-2 Lsol. 50% of the stellar mass of the universe was formed by $z~1-1.5. The rate of increase in the stellar mass density with decreasing redshift is similar to but above that for independent estimates from the HDF-N, but is slightly less than that predicted by the integral of the SFR(z) curve.Comment: 19 pages, 12 figures, Accepted for Publication in the Dec. 20, 2003 edition of the Astrophysical Journal. Minor changes made to match the accepted version including short discussions on the effects of clustering and on possible systematic effects resulting from photometric redshift error

    A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample

    Full text link
    We investigate the nature of the substantial population of high-z galaxies with Js-Ks>2.3 discovered as part of our FIRES survey. This colour cut efficiently isolates z>2 galaxies with red rest-frame optical colors ("Distant Red Galaxies" or DRGs). We select objects in the 2.5'x2.5' HDF-South (HDF-S) and 5'x5' field around the MS1054-03 cluster; the surface densities at Ks<21 are 1.6+-0.6 and 1.0+-0.2 arcmin^-2. We discuss the 34 DRGs at 2<z<3.5: 11 at Ks<22.5 in HDF-S and 23 at Ks<21.7 in the MS1054-03 field. We analyze the SEDs constructed from our deep near-infrared (NIR) and optical imaging from the ESO VLT and HST. We develop diagnostics involving I-Js, Js-H, and H-Ks to argue that the red NIR colors of DRGs cannot be attributed solely to extinction and require for many an evolved stellar population with prominent Balmer/4000A break. In the rest-frame, the optical colours of DRGs fall within the envelope of normal nearby galaxies and the UV colours suggest a wide range in star formation activity and/or extinction. This contrasts with the much bluer and more uniform SEDs of Lyman break galaxies (LBGs). From evolutionary synthesis models with constant star formation, solar metallicity, Salpeter IMF, and Calzetti et al. extinction law, we derive for the HDF-S (MS1054-03 field) DRGs median ages of 1.7(2.0) Gyr, A_V = 2.7(2.4) mag, stellar masses 0.8(1.6)x10^11 Msun, M/L_V = 1.2(2.3) Msun/LVsun, and SFR = 120(170) Msun/yr. Models assuming declining SFRs with e-folding timescales of 10Myr-1Gyr generally imply younger ages, lower A_V's and SFRs, but similar stellar masses within a factor of two. Compared to LBGs at similar redshifts and rest-frame L_V's, DRGs are older, more massive, and more obscured for any given star formation history. [ABRIDGED]Comment: Accepted for publication in the Astrophysical Journal. 27 pages, 14 b/w figure
    corecore