174 research outputs found

    High‐Resolution Îœ1 Spectrum of Propyne: Application of a Microcomputer‐Controlled Infrared‐Acoustic Color Center Laser Spectrometer

    Get PDF
    Development of a microcomputer‐controlled infrared‐acoustic color center laserspectrometer capable of scanning in 100 cm−1 sections over the wavelength range 2.2–3.3 ÎŒm with a resolution of 0.01 cm−1 (300 MHz) is reported. Application of the spectrometer to investigation of the Îœ1spectrum of propyne is demonstrated

    The water vapour distribution in the Arctic lowermost stratosphere during LAUTLOS campaign and related transport processes including stratosphere-troposphere exchange

    Get PDF
    International audienceBalloon-borne water vapour measurements during January and February 2004, which were obtained as part of the LAUTLOS campaign at SodankylÀ, Finland, 67° N, were used to analyse the water vapour distribution in the wintertime Arctic lowermost stratosphere. A 2.5 km thick layer (or 30 K in the potential temperature scale) above the local tropopause is characterized by a significant water vapour variability on a synoptic timescale with values between stratospheric and tropospheric, which is in good agreement with previously reported measurements. A cross-correlation analysis of ozone and water vapour confirms that this layer contains a mixture of stratospheric and tropospheric air masses. Some of the flights sampled laminae of enhanced water vapour above the tropopause. Meteorological analyses and backward trajectory calculations show that these features are related to filaments that had developed along the flanks of cut-off anticyclones, which had been active at this time over the Northern Atlantic. Cross-tropopause mass fluxes calculated following the Wei method are used to identify regions and processes that are important for stratosphere-troposphere exchange (STE) in high-latitudes. Intensive STE occurs around cut-off anticyclones in regions of strong winds, where calculations suggest the presence of developed clear-air turbulence. The decay of the filaments is also shown to be important for STE

    The water vapour distribution in the Arctic lowermost stratosphere during the LAUTLOS campaign and related transport processes including stratosphere-troposphere exchange

    Get PDF
    International audienceBalloon-borne water vapour measurements during January and February 2004, which were obtained as part of the LAUTLOS campaign at SodankylÀ, Finland, 67° N, were used to analyse the water vapour distribution in the wintertime Arctic lowermost stratosphere. A 2.5 km thick layer (or 30 K in the potential temperature scale) above the tropopause is characterized by a significant water vapour variability on a synoptic timescale with values between stratospheric and tropospheric, which is in good agreement with previously reported measurements. A cross-correlation analysis of ozone and water vapour confirms that this layer contains a mixture of stratospheric and tropospheric air masses. Some of the flights sampled laminae of enhanced water vapour above the tropopause. Meteorological analyses and backward trajectory calculations show that these features were related to filaments that had developed along the flanks of cut-off anticyclones, which had been active at this time over the Northern Atlantic. The role of the filaments was however not to transport water vapour from the troposphere to the stratosphere but rather to transport it within the stratosphere away from regions where intensive two-way stratosphere-troposphere exchange (STE) was identified. Intensive STE occurred around cut-off anticyclones in regions of strong winds, where calculations suggest the presence of clear-air turbulence (CAT). Evidences that CAT contributes to the troposphere-to-stratosphere transport (TST) are presented. However, statistically, relation between TST and CAT during the studied period is weak

    Preliminary Rovibrational Analysis of the nÎœ6+Îœ1−nÎœ6 Vibration in HCN⋅⋅⋅HF

    Get PDF
    A preliminary rotation‐vibration analysis of the n=0 and n=1 subbands associated with the nÎœ6+Îœ1−nÎœ6 hydrogen‐bonded vibration in HCN⋅⋅⋅HF has been completed. The following excited staterotational constantsBâ€Č and band origin frequencies Îœ0 have been determined for the complex. The results are consistent with a rotation‐vibration interaction constant α1=−68.3±1 MHz which correlates with an excited stater(N⋅⋅⋅F) internuclear distance of 2.762 Å, a decrease of 0.034 Å relative to the ground state.Excited state lifetimes associated with assigned transitions are demonstrated to be ≄1.8×10− 1 0s while the x 1 6 anharmonic constant is evaluated to be 4.01±0.03 cm− 1

    Quality assurance of the Brewer spectral UV measurements in Finland

    Get PDF
    The quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long-term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and is included in the data processing software. The results showed that the actual cosine correction factor of the two Finnish Brewers can vary between 1.08–1.13 and 1.08–1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the instruments' internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long-term spectral responsivity was calculated using the time series of several lamps using two slightly different methods. The long-term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole of the measurement time-periods 1990–2006 and 1995–2006 for SodankylĂ€ and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002–2007

    Quality assurance of the Brewer UV measurements in Finland

    No full text
    International audienceThe quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and included in the data processing software. The results showed that the actual cosine correction factor of the Finnish Brewers can vary between 1.08?1.13 and 1.08?1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long term spectral responsivity was calculated using time series of several lamps using two slightly different methods. The long term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole measurement time periods 1990?2006 and 1995?2006 for SodankylÀ and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002?2007

    Operational considerations to improve total ozone measurements with a Microtops II ozone monitor

    Get PDF
    A Microtops II 'ozone monitor' with UV channels centered at 305.5, 312.5, and 320 nm has been used routinely in six experimental campaigns carried out in several geographic locations and seasons, covering latitudes from 35 to 68° N during the last ten years (2001-2011). The total ozone content is retrieved by Microtops II by using different combinations (Channel I, 305.5/312.5 nm; Channel II, 312.5/320 nm; and Channel III, 305.5/312.5/320 nm) of the signals at the three ultraviolet wavelengths. The long-term performance of the total ozone content determination has been studied taking into account the sensitivities to the calibration, airmass, temperature and aerosols. When a calibration was used and the airmass limit was fixed to 3, the root mean square deviations of the relative differences produced by Microtops II with respect to several Brewers are 0.9, 2, and 2% respectively for the Channel I, Channel II, and Channel III retrieval. The performance of the Microtops retrieval has been stable during the last ten years. Channel I represents the best option to determine the instantaneous total ozone content. Channels II and III values appear weakly sensitive to temperature, ozone content, and aerosols. Channel II is more stable than Channel I for airmasses larger than 2.6. The conclusions do not show any dependence on latitude and season

    Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO_2, CH_4 and N_2O

    Get PDF
    We present a comparison of an atmospheric general circulation model (AGCM)-based chemistry-transport model (ACTM) simulation with total column measurements of CO_2, CH_4 and N_2O from the Total Carbon Column Observing Network (TCCON). The model is able to capture observed trends, seasonal cycles and inter hemispheric gradients at most sampled locations for all three species. The model-observation agreements are best for CO_2, because the simulation uses fossil fuel inventories and an inverse model estimate of non-fossil fuel fluxes. The ACTM captures much of the observed seasonal variability in CO_2 and N_2O total columns (~81 % variance, R>0.9 between ACTM and TCCON for 19 out of 22 cases). These results suggest that the transport processes in troposphere and stratosphere are well represented in ACTM. Thus the poor correlation between simulated and observed CH4 total columns, particularly at tropical and extra-tropical sites, have been attributed to the uncertainties in surface emissions and loss by hydroxyl radicals. While the upward-looking total column measurements of CO_2 contains surface flux signals at various spatial and temporal scales, the N_2O measurements are strongly affected by the concentration variations in the upper troposphere and stratosphere

    Antarctic new particle formation from continental biogenic precursors

    Get PDF
    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover
    • 

    corecore