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Preliminary rovibrational analysis of the nvs+v1-nVS 
vibration in HCN···HF 

E. Kyr(), R. Warren, K. McMillan, M. Eliades, D. Danzeiser, P. Shoja-Chaghervand, S. G. Lieb, 
and J. W. Bevan 

Chemistry Depanment, Texas A&M University, College Station, Texas 77843 
(Received 16 November 1982; accepted 3 February 1983) 

A preliminary rotation-vibration analysis of the n = 0 and n = I subbands associated with the 
nV6 + VI - nV6 hydrogen-bonded vibration in HCN· .. HF has been completed. The following excited state 
rotational constants B' and band origin frequencies V 0 have been determined for the complex. 

States 

n=O 
n=l 

3716.20(2) 
3720.21(1) 

0.12206(5) 
0.12326(1) 

The results are consistent with a rotation-vibration interaction constant a I = - 68.3 ± I MHz which 
correlates with an excited state r(N··.F) internuclear distance of 2.762 A, a decrease of 0.034 A relative to the 
ground state. Excited state lifetimes associated with assigned transitions are demonstrated to be ;::>: 1.8 X 1O- lOs 
while the x 16 anharmonic constant is evaluated to be 4.01 ±0.03 em-I. 

INTRODUCTION 

Spectroscopic investigations of fundamental X-H hy­
drogen-bonded vibrations in the near infrared1•2 have 
not only played an important role in demonstrating the 
existence of such molecular complexes but have also 
provided information with which to probe numerous 
theories of hydrogen bonding. 3.4 In particular, the fre­
quency shift of this vibration relative to the free HX 
stretching Vibration, the corresponding increase in band­
width often accompanied by submaxima and the enhance­
ment of integrated intensity3.4 have been pivotal in inves­
tigating dynamical theories of hydrogen bonding. 5.6 Ex­
perimental studies have, however, primarily been lim­
lted to the condensed phase or low resolution gaseous 
phase studies. This has thus restricted the extent of 
such analyses and placed severe restrictions on the in­
vestigation and assessment of relevant theoretical mod­
els including the Stepanov approximation, T coupling 
theories8- 10 and models of predissociation. 11.12 

In this paper, we report preliminary studies of the 
gaseous phase rotation-vibration spectrum of the n = 0 
and n = 1 bands associated with the nilS + 111 - nils vibra­
tion in the common isotopic species of the hydrogen­
bonded complex HCN· .. HF using a single -frequency 
sequential-mode-hop color center laser spectrometer. 
Spectral assignment, evaluation of rovibrational param­
eters and tranSition linewidths relevant to relaxation line 
broadening processes will be discussed. 

EXPERIMENTAL 

Spectroscopic investigations were performed using a 
single-frequency sequential-mode-hop color center laser 
spectrometer (Fig. 1). A microcomputer system de­
scribed previously13 controls the synchronous tuning of 
grating and internal etalon in the Burleigh FCL-20 color 
center laser providing single-mode sequential-mode­
hop scans over broad frequency ranges (~100 cm-1) at a 

time with a resolution determined by the frequency separ­
ation between the adjacent longitudinal cavity modes 
(300 MHz = 0.01 cm-1). For the frequency range of in­
terest 3690-3730 cm-1 a KC1: Li crystal of the color 
center laser was pumped with 1. 5 W single line 6471 A. 
output of a Spectra-Physics 171-01 Kr+ laser. The 15-
20 mW infrared output beam is directed into the evacu­
ated diagnostic box where it is beam split. At the first 
beam splitter, part of the beam is passed through a high 
resolution spectrum analyzer (Burleigh CFT-500, 150 
MHz FSR) which monitors the spectral purity of the laser 
output. The remainder of the beam is chopped before a 
second beam splitter directs part of the remaining beam 
through a marker cavity (Burleigh CF-25 3 GHz FSR) 
providing frequency markers every 0.100 cm-1• A small 
subsidiary vacuum box containing a beam director is used 
to pass the last part of the beam (- 4 mW) into the multi­
reflection cell. This cell has 4 m physical length and can 
be adjusted to give effective absorption path lengths up to 
320 m. The vacuum box containing the beam director can 
also be filled with a reference gas at low pressure to pro­
vide a frequency calibration of the recorded spectrum. 
In the present case, water vapor was used for this pur­
pose. 14 The beam exiting the multireflection cell is then 
detected by a PbS detector, the output signal of which is 
amplified and sent to a lock-in amplifier and recorder 
arrangement. 

Gaseous phase mixtures of HCN ,and HF were prepared 
using corrosion resistent vacuum lines, vacuum gauges, 
and transfer vessels. All components were constructed 
from Teflon, brass, copper, calcium fluoride, and stain­
less steel. 

The multireflection White cell was temperature con­
trollable to -100°C using an isopentane refrigeration 
system cooled by a Uquid nitrogen Cryoson V tempera­
ture controller. 

J. Chern. Phys. 78(10), 15 May 1983 0021-9606/83/105881-05$02.10 © 1983 American Institute of Physics 5881 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.242.208.194 On: Tue, 03 Nov 2015 14:46:06



5882 Kyro et al.: Rovibrational analysis of HCN···HF 

Temperature Controlled White Cell 

:=:::::~~~~~~~~~~:~~~~~P:b:S:Detector 
, Beam Director 

Diagnostic Box 

150 MHz Etalon 
Beam Splitter 

Detector 

Input Pump Beam 
Kr + Laser Window 

Grating (and mirror) 

FCL-20 Laser 
Crystal Chamber 

FIG. 1. Color center laser spec­
trometer used to record hydrogen­
bonded spectrum. 

RESULTS an effective pathlength of 96 m. The P bandheads with 
maxima at 3710.06 and 3714.17 cm-t have been assigned 
previouslyt5 at lower resolution. They are associated 
with rotation-vibration transitions from the ground vi­
brational state and first excited state of the low frequen­
cy hydrogen-bond bending vibration liS -70 ± 24 cm-t. 

Figure 2 illustrates the nils + lit - nils rotation-vibra­
tion spectrum obtained using the color center laser 
spectrometer in the frequency range 3707 -3724 cm"t. 
The spectrum was recorded at a total gaseous phase 
pressure of O. 5 Torr and a temperature of 213 K with 

3710 3715 

HCN----HF 

n= 0 
P(25) P(11) 

111111111111111 

The heads were interpreted as arising because the ex-

3720 

FIG. 2. Part of the nvs + V1 -nvs high resolution infrared spectrum in HCN··· HF illustrating the partially resolved P(J) and R(J) 
branch transitions associated with n = 0 and n = 1 states. Total pressure 0.5 Torr, temperature 213 K and 96 m effective path­
length. Etalon markers are separated by 0.10 cm-1, time constant Is, scan time 15.1 min. 

J. Chern. Phys., Vol. 78, No. 10, 15 May 1983 
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TABLE I. Rotational vibrational frequencies associated with nvs + vI -nvs vibration in 
HCN··· HF. 

n =0 Subband n= 1 Subband 
Transition Obs. Freq. Obs.-Calc. Obs. Freq. Obs.-Calc. 

R(11) 3719.424 -0.10><10-1 
R(12) 3719.744 +0.11><10-1 
R(13) 3720.032 -0.45><10~ 
R(14) 3720.371 + O. 27>< 10-1 
R(15) ·3720.690 +0.33><10-1 

R(16) 3721.008 +0.34><10-1 

R(17) 3721. 319 +0.23><10-1 

P(9) 3718.222 
P(10) 3718.010 
P(11) 3713.822 + O. 26 >< 10-2 3717.815 
P(12) 3713.630 +0.64><10'" 3717.619 
P(13) 3713.445 -0.47 ><10'" 3717.441 
P(14) 3713.260 -0.47><10-2 3717.268 
P(15) 3713.085 -0.39xl0-2 3717.090 
P(16) 3712.919 + 0.13 >< 10-2 3716.923 
P(17) 3712.754 +0.29><10-2 
P(18) 3712.584 - O. 50x 10-2 3716.625 
P(19) 3712.429 - O. 24>< 10-2 3716.451 
P(20) 3712.275 -0.34><10-2 3716.309 
P(21) 3712.135 +0.50><10-2 3716.160 
P(22) 3711. 989 + O. 29 >< 10-2 3716.007 
P(23) 3711. 840 -0.68><10-2 3715.878 
P(24) 3711. 714 +0.20><10-2 3715.746 
P(25) 3711. 582 +0.17><10-3 3715.627 
P(26) 3715.508 
P(27) 3715.393 
P(28) 3715.288 
P(29) 3715.170 
P(30) 3715.065 

cited vibrational state rotational constants B' are such 
that B' - B" "" O. 002 cm -1 resulting in the convergence 
of P(J) branch transitions to form the bandheads. Re­
solved rotation-vibration transitions associated with 
these bands are given in Table I. We were able to 
assign 15 P(J) and 7 R(J) branch transitions for n = 0 and 
22 P(J) branch transitions for n = 1 subbands, respective­
ly. The observed linewidths of unblended aSSigned lines 
are - 0.06-0.09 cm-1 full width at half -maximum which 
placed severe limitations on our accuracy of transition 
frequency determination. We estimate the latter to be 
± 0.010 cm-1 for unblended lines. The data were fit to 
the expression for a linear molecule 

(1 ) 

where Vo is the origin frequency, B' and B" the excited 
and ground vibrational state rotational constants, and 
m = -J and J + 1 for p(J) and R(J) branch transitions, 
respectively. The latter transitions are partially 
blended and thus weighted at O. 083. 

Results for two parameter fits are given in Table II 
using constrained B" values previously determined from 
microwave spectroscopy. 16 Estimated errors are based 
on two standard deviations determined from the fits. 
Standard deviations of frequencies fitted to the aSSigned 
transitions are 0.014 cm-1• We consider the quality and 
relatively limited number of transitions in our currently 
available data not to warrant incorporation of the two 

+0.15><10-1 

+ 0.63 >< 10-3 

-0.68xl0-2 
~0.60xl0-2 

-0.51xl0-2 

-0.99xl0-2 

-0.46xl0-2 
- O. 30 X 10-2 

+0.17xl0-l 
+0.16x10-2 
+0.89><10-2 

0.44xl0-2 
-0.90><10-2 
-0.31xl0-2 

-0.51xl0-2 
+0.l1xl0-2 
+0.24xl0-2 
+0.31x10-2 
+0.88xl0-2 
- O. 32x 10-2 
- 0.71 X 10-2 

additional distortion parameters D~' and D~ in these con­
strained fits. It is pertinent to note that the observed 
linewidths combined with the available data results in 
some ambiguity over the spectral aSSignment despite 
the fact that the complex is linear. Independent of line 
assignment the difference B' - B" of the rotational con­
stants can be evaluated with high accuracy [0.002278(3) 
cm-1 for n = 0 and + O. 00243(1) for n = 1]. However, 
we ran several constrained fits varying the line assign­
ment and chose that which gave the respective B" con­
stants closest to the corresponding values determined 
from microwave spectroscopy. 16 For the n = 0 subband, 
shifting the line assignment by one step (i. e., m - m + 1) 
changes the B" constant obtained by an amount I AB"I 
- 0.003 cm-t, which corresponds to ten standard devia­
tions. In the corresponding n= 1 subband, such a change 
correlates with one standard deviation. Consequently, 

TABLE II. Molecular constantsa for HCN··· HF determined 
from nVS+vl-nvS analysisb. 

states 

n=O 
n=1 

vo/cm-I 
---------------------------

3716.20(2) 
3720.21(1) 
O!I =-68.3±1 MHz 

0.12206(5) 
0.12326(1) 
xIs=4.01±0.03 cm-I 

aEstimated errors, two standard deviations in fits. 
bLower state constants from Ref. (16). 

J. Chern. Phys., Vol. 78, No. 10, 15 May 1983 
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we are more confident about the assignment of the n = 0 
subband than we are of the n = 1 subband. The reason 
for the poorer statistics in this latter analysis reflects 
our inability to assign R(J) branch transitions resulting 
in a comparatively narrow m range. Furthermore, 
some of the n= 1 subband transitions are overlapped 
with lines from the n = 0 subband thus slightly shifting 
the measured peak frequencies. It is pertinent to 
note that a perturbation is probably responsible for the 
displaced n = 1 P(17) transition. 

The above assignments and derived molecular param­
eters (given in Table II) enable the determination of 
quantities important in characterization of the HeN· .• HF 
hydrogen bond. Application of the vibrational energy ex­
pression 

G(v1o V2, v3' .•• ) 

= ~ vbl + (dl/2)]+ ~ ~ XU[V1 + (~I)J[Vk+ ~k] 
- (2) 

to the n = 0, n = 1 nvs + VI - nvs subband origin frequen­
cies Vo enables evaluation of the anharmonic constant 
XIS as 4.01 ±O. 03 cm-I • 

The rotational-vibrational constant al can be estimated 
using the expression 

Bv= Be -al(v1 + dl /2) (3) 

and is evaluated as - 68. 3 ± 1 MHz. 

Relative intensity measurements on relatively unblended 
individual and corresponding p(J) transitions in n = 0 and 
n = 1 subbands also provide an estimate of the low fre­
quency double degenerate Vs bending vibration in the com­
plex. The determined frequency of this vibration was 
84 ± 19 cm-I which compares with the previously estimated 
values of 70±24 cm-t, 90±20 cm-t, and 86.3 cm-I deter­
mined from lower resolution infrared studies, 15 gaseous 
phase microwave intensity measurements, IS and ab initio 
molecular orbital calculations. 17 These measurements 
provide independent confirmation of the assignment of the 
subbands as being associated with the nvs + VI - nvs vibra­
tion in the complex. 

Although the variation of the v10 B' rotational constant 
with respect to the corresponding ground state value 
should strictly be interpreted in terms of anharmonicity 
it is interesting to fit its corresponding moment of inertia 
to excited state structural parameters of the complex. 
Assuming the monomer component parameters remain 
invariant on complex formation, 16 the rl (N··· F) inter­
molecular distance can be estimated as 2.762(1) A.. 
This indicates a shortening of 0.034 A. relative to the 
corresponding ground state bond length. 

Our observed linewidths are typically O. 06-0. 09 cm- I 

(1800-2700 MHz) full width at half-maximum. These 
linewidths have been found invariant under the gaseous 
phase conditions used in current investigations which 
involved total pressure of 25 Torr at 300 K down to O. 5 
Torr at 213 K. The results indicate excited state life­
times 2: 1. 8 X 10-10 s for the complex assuming that the 
relaxation line broadening full width at half-maximum is 
given by 111fT and can be compared with previous results 
obtained at higher pressures. 15 

CONCLUSIONS 

We have partially resolved the rovibrational spectrum 
of the n = 0 and n = 1 subbands associated with the nvs 
+ VI -nvs vibration of the common isotopic species in 
HCN' .. HF at low pressure gaseous phase mixtures 
providing, in particular, complex parameters for the 
excited vibrational state. The band origins of the n = 0 
and n = 1 subbands are srown to be 3716.20 ± O. 01 and 
3720.21 ± 0.01 em-I. Thus, part of the information 
necessary to evaluate the anharmonicUy corrected "I 
fundamental frequency necessary for frequency shift 
correlations with bond length and bond strength,4 force 
field calculations and comparison with the results of 
ab initio calculations,17 has been determined. 

If the interaction constant al is used to interpret the 
excited state structure, it is consistent with an r(N· •. F) 
intermolecular distance of 2. 762 A.. This is a O. 034 A. 
shortening of this bond length relative to the correspond­
ing ground vibrational state value. 16 Sheppard3 has pre­
viously explained this phenomena. In our case, it is con­
sidered as resulting from anharmonicity of the hydrogen­
bonded F-H vibration causing the proton to move on 
average nearer to the nitrogen atom of hydrogen cyanide 
in the excited state consequently causing the hydrogen 
bond to become stronger. The corresponding al constant 
is determined to be - 68. 3 MHz which compares with the 
(l!a value of + 61. 79 ± 0.03 MHz determined from previous 
gaseous phase microwave results. 16 

Observed linewidths for the assigned transitions are 
typically 1800-2700 MHz under our experimental condi­
tions. The Doppler contribution to these lines is predict­
ed to be -162 MHz whereas the spectrometer bandwidth 
is determined by the 300 MHz frequency separation of 
adjacent longitudinal cavity modes. For the O. 5 Torr 
total pressure at which the spectrum in Fig. 2 is re­
corded, pressure broadening is expected to be less than 
50 MHz. The remaining broadening could be contributed 
by overlapped unresolved transitions, but this is con­
sidered improbable for the particular complex under 
consideration. An alternative explanation is that the 
residual linewidth is primarily a consequence of the short 
excited state lifetime of -1. 8 x 10-10 s. This could be a 
consequence of fast intramolecular or predissociative re­
laxation. The latter effect has recently been the sub­
ject of considerable theoretical investigation. 11.12 As 
VI = 3716. 20 cm-! for HCN· .. HF, the absorbed photon 
energy is greater than the experimentally determined 
dissociation energies (D.=2180 cm-t, DQ = 1581 em-I) 
of the complex. 1S These excited states of the complex 
are thus metastable and predissociative line broadening 
could be an important consideration. Molecular beam 
and other spectroscopic experiments are currently in 
progress to make more definitive statements concern~ 
ing this phenomenon and improve our currently avail­
able transition frequencies. 
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