250 research outputs found

    Hardware/Software co-design with ADC-Less In-memory Computing Hardware for Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, 2−7×2-7\times and 8.9−24.6×8.9-24.6\times, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.Comment: 12 pages, 13 figure

    How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis

    Full text link
    Measurements with an atomic force microscope (AFM) offer a direct way to probe elastic properties of lipid bilayer membranes locally: provided the underlying stress-strain relation is known, material parameters such as surface tension or bending rigidity may be deduced. In a recent experiment a pore-spanning membrane was poked with an AFM tip, yielding a linear behavior of the force-indentation curves. A theoretical model for this case is presented here which describes these curves in the framework of Helfrich theory. The linear behavior of the measurements is reproduced if one neglects the influence of adhesion between tip and membrane. Including it via an adhesion balance changes the situation significantly: force-distance curves cease to be linear, hysteresis and nonzero detachment forces can show up. The characteristics of this rich scenario are discussed in detail in this article.Comment: 14 pages, 9 figures, REVTeX4 style. New version corresponds to the one accepted by PRE. The result section is restructured: a comparison to experimental findings is included; the discussion on the influence of adhesion between AFM tip and membrane is extende

    Mapping between dynamic markings and performed loudness: a machine learning approach

    Get PDF
    This work was supported in part by UK EPSRC Platform Grant for Digital Music (EP/K009559/1), the Spanish TIN project TIMUL (TIN2013-48152- C2-2-R), and the European Unions Horizon 2020 research and innovation programme under grant agreement No 688269

    Privacy by Design: From Technologies to Architectures (Position Paper)

    Get PDF
    Existing work on privacy by design mostly focus on technologies rather than methodologies and on components rather than architectures. In this paper, we advocate the idea that privacy by design should also be addressed at the architectural level and be associated with suitable methodologies. Among other benefits, architectural descriptions enable a more systematic exploration of the design space. In addition, because privacy is intrinsically a complex notion that can be in tension with other requirements, we believe that formal methods should play a key role in this area. After presenting our position, we provide some hints on how our approach can turn into practice based on ongoing work on a privacy by design environment
    • …
    corecore