826 research outputs found

    HT Cas - eclipsing dwarf nova during its superoutburst in 2010

    Get PDF
    We present results of a world-wide observing campaign of the eclipsing dwarf nova - HT Cas during its superoutburst in November 2010. Using collected data we were able to conduct analysis of the light curves and we calculated OCO-C diagrams. The CCD photometric observations enabled us to derive the superhump period and with the timings of eclipses the orbital period was calculated. Based on superhump and orbital period estimations the period excess and mass ratio of the system were obtained

    IX Draconis - a curious ER UMa-type dwarf nova

    Full text link
    We report results of an extensive world-wide observing campaign devoted to a very active dwarf nova star - IX Draconis. We investigated photometric behaviour of the system to derive its basic outburst properties and understand peculiarities of IX Dra as well as other active cataclysmic variables, in particular dwarf novae of the ER Uma-type. In order to measure fundamental parameters of the system, we carried out analyses of the light curve, O-C diagram, and power spectra. During over two months of observations we detected two superoutbursts and several normal outbursts. The V magnitude of the star varied in the range 14.6 - 18.2 mag. Superoutbursts occur regularly with the supercycle length of 58.5+/-0.5 d. When analysing data over the past 20 years, we found that the supercycle length is increasing at a rate of P_dot = 1.8 * 10^{-3}. Normal outbursts appear to be irregular, with typical occurrence times in the range 3.1 - 4.1 d. We detected a double-peaked structure of superhumps during superoutburst, with the secondary maximum becoming dominant near the end of the superoutburst. The mean superhump period observed during superoutbursts equals 0.066982(36) d, which is constant over the last two decades of observations. Based on the power spectrum analysis, the evaluation of the orbital period was problematic. We found two possible values: the first one, 0.06641(3) d, which is in agreement with previous studies and our O-C analysis (0.06646(2) d), and the second one, 0.06482(3) d, which is less likely. The evolutionary status of the object depends dramatically on the choice between these two values. A spectroscopic determination of the orbital period is needed. We updated available information on ER UMa-type stars and present a new set of their basic statistics. Thereby, we provide evidence that this class of stars is not uniform.Comment: Accepted for publication in MNRAS; 15 pages, 15 figures, 6 tables; typo correcte

    MN Draconis - peculiar, active dwarf nova in the period gap

    Full text link
    Context: We present results of an extensive world-wide observing campaign of MN Draconis. Aims: MN Draconis is a poorly known active dwarf nova in the period gap and is one of the only two known cases of period gap SU UMa objects showing the negative superhumps. Photometric behaviour of MN Draconis poses a challenge for existing models of the superhump and superoutburst mechanisms. Therefore, thorough investigation of peculiar systems, such as MN Draconis, is crucial for our understanding of evolution of the close binary stars. Methods: To measure fundamental parameters of the system, we collected photometric data in October 2009, June-September 2013 and June-December 2015. Analysis of the light curves, OCO-C diagrams and power spectra was carried out. Results: During our three observational seasons we detected four superoutburts and several normal outbursts. Based on the two consecutive superoutbursts detected in 2015, the supercycle length was derived P_sc = 74 +/- 0.5 days and it has been increasing with a rate of P_dot = 3.3 x 10^(-3) during last twelve years. Based on the positive and negative superhumps we calculated the period excess epsilon = 5.6% +/- 0.1%, the period deficit epsilon_ = 2.5% +/- 0.6%, and in result, the orbital period P_orb = 0.0994(1) days (143.126 +/- 0.144 min). We updated the basic light curve parameters of MN Draconis. Conclusions: MN Draconis is the first discovered SU UMa system in the period gap with increasing supercycle length.Comment: 14 pages, 20 figures, 8 tables, accepted for publication in Astronomy and Astrophysic

    The impact of skull bone intensity on the quality of compressed CT neuro images

    Get PDF
    International audienceThe increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images

    FIRST "Winged" and X-shaped Radio Source Candidates: II. New Redshifts

    Full text link
    We report optical spectroscopic observations of X-shaped radio sources with the Hobby-Eberly Telescope and Multiple-Mirror Telescope, focused on the sample of candidates from the FIRST survey presented in Paper I (Cheung 2007). A total of 27 redshifts were successfully obtained, 21 of which are new, including that of a newly identified candidate source of this type which is presented here. With these observations, the sample of candidates from Paper I is over 50% spectroscopically identified. Two new broad emission-lined X-shaped radio sources are revealed, while no emission lines were detected in about one third of the observed sources; a detailed study of the line properties is deferred to a future paper. Finally, to explore their relation to the Fanaroff-Riley division, the radio luminosities and host galaxy absolute magnitudes of a spectroscopically identified sample of 50 X-shaped radio galaxies are calculated to determine their placement in the Owen-Ledlow plane.Comment: emulateapj style, 10 pages, 4 figures, 2 tables; ApJS accepted with minor revision from submitted version (v1

    The magnetic field and geometry of the oblique shock in the jet of 3C 346

    Full text link
    We investigate the brightest regions of the kpc-scale jet in the powerful radio galaxy 3C 346, using new optical HST ACS/F606W polarimetry together with Chandra X-ray data and 14.9 GHz and 22.5 GHz VLA radio polarimetry. The jet shows a close correspondence in optical and radio morphology, while the X-ray emission shows an 0.80 +/- 0.17 kpc offset from the optical and radio peak positions. Optical and radio polarimetry show the same apparent magnetic field position angle and fractional polarization at the brightest knot, where the jet undergoes a large kink of almost 70 degrees in the optical and radio images. The apparent field direction here is well-aligned with the new jet direction, as predicted by earlier work that suggested the kink was the result of an oblique shock. We have explored models of the polarization from oblique shocks to understand the geometry of the 3C 346 jet, and find that the upstream flow is likely to be highly relativistic (0.91 +0.05 / -0.07 c), where the plane of the shock front is inclined at an angle of 51 (+/- 11) degrees to the upstream flow which is at an angle 14 (+8 / -7) degrees to our line of sight. The actual deflection angle of the jet in this case is only 22 degrees.Comment: 11 pages, 5 figures. Accepted by MNRA

    Observation of the first gravitational microlensing event in a sparse stellar field : the Tago event

    Full text link
    We report the observation of the first gravitational microlensing event in a sparse stellar field, involving the brightest (V=11.4 mag) andclosest (~ 1 kpc) source star to date. This event was discovered by an amateurastronomer, A. Tago, on 2006 October 31 as a transient brightening, by ~4.5 mag during a ~15 day period, of a normal A-type star (GSC 3656-1328) in the Cassiopeia constellation. Analysis of both spectroscopic observations and the light curve indicates that this event was caused by gravitational microlensing rather than an intrinsically variable star. Discovery of this single event over a 30 year period is roughly consistent with the expected microlensing rate for the whole sky down to V = 12 mag stars. However, the probability for finding events with such a high magnification (~ 50) is much smaller, by a factor ~1/50, which implies that the true event rate may be higher than expected. This discovery indicates the potential of all sky variability surveys, employing frequent sampling by telescopes with small apertures and wide fields of view, for finding such rare transient events, and using the observations to explore galactic disk structure and search for exo-planets.Comment: 13 pages, 2 tables, 3 figures, accepted by Ap
    corecore