2,062 research outputs found

    Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity

    Get PDF
    Background: Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results: In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions: In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist

    Identification of asteroid genera with species capable of larval cloning

    Get PDF
    Asexual reproduction in larvae, larval cloning, is a recently recognized component of the complex life histories of asteroids. We compare DNA sequences of mitochondrial tRNA genes (Ala, Leu, Asn, Pro and Gln) from larvae in the process of cloning collected in the field with sequences from adults of known species in order to identify asteroid taxa capable of cloning. Neighbor-joining analysis identified four distinct groups of larvae, each having no, or very little, sequence divergence (p distances ranging from 0.00000 to 0.02589); thus, we conclude that each larval group most likely represents a single species. These field-collected larvae cannot be identified to species with certainty, but the close assemblage of known taxa with the four larval groups indicates generic or familial identity. We can assign two of the larval groups discerned here to the genera Luidia and Oreaster and another two to the family Ophidiasteridae. This study is the first to identify field-collected cloning asteroid larvae, and provides evidence that larval cloning is phylogenetically widespread within the Asteroidea. Additionally, we note that cloning occurs regularly and in multiple ways within species that are capable of cloning, emphasizing the need for further investigation of the role of larval cloning in the ecology and evolution of asteroids

    Conformative Filtering for Implicit Feedback Data

    Full text link
    Implicit feedback is the simplest form of user feedback that can be used for item recommendation. It is easy to collect and is domain independent. However, there is a lack of negative examples. Previous work tackles this problem by assuming that users are not interested or not as much interested in the unconsumed items. Those assumptions are often severely violated since non-consumption can be due to factors like unawareness or lack of resources. Therefore, non-consumption by a user does not always mean disinterest or irrelevance. In this paper, we propose a novel method called Conformative Filtering (CoF) to address the issue. The motivating observation is that if there is a large group of users who share the same taste and none of them have consumed an item before, then it is likely that the item is not of interest to the group. We perform multidimensional clustering on implicit feedback data using hierarchical latent tree analysis (HLTA) to identify user `tastes' groups and make recommendations for a user based on her memberships in the groups and on the past behavior of the groups. Experiments on two real-world datasets from different domains show that CoF has superior performance compared to several common baselines

    A search algorithm for quantum state engineering and metrology

    Get PDF
    In this paper we present a search algorithm that finds useful optical quantum states which can be created with current technology. We apply the algorithm to the field of quantum metrology with the goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently produces a number of novel solutions: we find experimentally-ready schemes to produce states that show significant improvements over the state-of-the-art, and can measure with a precision that beats the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to moderate/high photon losses, and we present a conceptually simple measurement scheme that saturates the Cramer-Rao bound

    Glial glutamate transporters and maturation of the mouse somatosensory cortex

    Get PDF
    In the adult nervous system, glutamatergic neurotransmission is tightly controlled by neuron-glia interactions through glial glutamate reuptake by the specific transporters GLT-1 and GLAST. Here, we have explored the role of these transporters in the structural and functional maturation of the somatosensory cortex of the mouse. We provide evidence that GLT-1 and GLAST are early and selectively expressed in barrels from P5 to P10. Confocal and electron microscopy confirm that the expression is restricted to the astroglial membrane. By P12, and despite an increased global expression as observed by immunoblotting, the barrel pattern of GLAST and GLT-1 staining is no longer evident. In P10 GLT-1 -/- and GLAST -/- mice, the cytoarchitectural segregation of the barrels is preserved. However, at P9-10, the functional response to whisker stimulation, measured by deoxyglucose uptake, is markedly decreased in GLT-1 -/- and GLAST -/- mice. The role of GLAST is transient since the metabolic response is already restored at P11-12 in GLAST -/- mice and remains unchanged in adulthood. However, deletion of GLT-1 seems to impair the functional metabolic response until adulthood. Our data suggest that astrocyte-neuron interactions via the glial glutamate transporters are involved in the functional maturation of the whisker representation in the somatosensory cortex
    • 

    corecore