19,561 research outputs found

    ULF waves in the solar wind as direct drivers of magnetospheric pulsations

    Get PDF
    [1] Global magnetospheric ULF pulsations with frequencies in the Pc 5 range (f = 1.7–6.7 mHz) and below have been observed for decades in space and on the Earth. Recent work has shown that in some cases these pulsations appear at discrete frequencies. Global cavity and waveguide modes have been offered as possible sources of such waves. In these models the magnetosphere is presumed to resonate globally at frequencies determined solely by its internal properties such as size, shape, field topology, mass density distribution, etc. We show in this work that upstream solar wind number density and dynamic pressure variations precede and drive compressional magnetic field variations at geosynchronous orbit. Furthermore, spectral analysis shows that wave power spectra in both the solar wind and magnetosphere contain peaks at the same discrete frequencies. Therefore, in contrast to the cavity mode hypothesis, we suggest that discrete ULF pulsations observed within the magnetosphere are at least sometimes directly driven by density oscillations present in the ambient solar wind. Finally, we comment on possible sources for such pulsations observed in the solar wind

    A statistical study of the global structure of the ring current

    Get PDF
    [1] In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. We find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with Dst as expected and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We attempt to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we need to multiply our computed disturbance by a factor of 1.88 ± 0.27 and add an offset of 3.84 ± 4.33 nT in order to get optimal agreement with Dst. When taking into account a tail current contribution of roughly 25%, this agrees well with our expectation of a factor of 1.3 to 1.5 based on a partially conducting Earth. The offset that we have to add does not agree well with an expected offset of approximately 20 nT based on solar wind pressure

    Addressing the Next Wave of Internet Regulation: The Case For Equal Opportunity

    Get PDF
    In October 2009, the Federal Communications Commission released a Notice of Proposed Rule Making in which it asked for guidance on how to convert a principle of “nondiscrimination on the Internet” into a practical rule for broadband service providers. The ultimate formulation of the nondiscrimination principle could have a significant economic effect on economic welfare in the short term and on innovation. In this paper, we explain the economics of discrimination and offer a new approach for identifying anticompetitive discrimination. Discrimination raises concerns when it interferes with what is often referred to as “equality of opportunity.” However, the Commission’s proposed nondiscrimination policy, which would limit the ability of service providers and content providers to contract on terms that (1) are mutually agreeable to both parties, (2) are available to all prospective consumers, and (3) do not impose significantly externalities on third parties, is inimical to promoting equality of opportunity. Moreover, given the twosided nature of the Internet access market, a blanket rule forbidding broadband service providers from offering quality of service to content providers (and charging for it) would likely harm endusers and certain content providers.

    Conductivity of boules of single crystal sodium beta-alumina

    Get PDF
    The ionic and electrochemical polarization characteristics of two boules of single crystal sodium beta-alumina (Na2O.8Al2O3), 2 cm in diameter, were investigated over the range of 25 to 300 C using 2- and 4-probe ac and dc techniques with reversible and ion-blocking electrodes. Textural (or internal) polarization at 27 C was present only in boule 1 which cleaved easily. Interfacial polarization, using solid sodium electrodes, was present at 27 C in the 2-probe conductivities for both boules. Cleaning with liquid sodium at 300 C reduced its magnitude, but some interfacial polarization was still present in the 2-probe conductivities for boule 2 below about 140 C. Above 140 C, with liquid sodium electrodes, the 2-probe conductivities, essentially polarization-free, were given by KT = 3300 exp(-3650/RT). The conductivity of boule 2 at 180 C remained essentially constant with increasing current density up to about 140 milliamps per square centimeter

    A quantitative assessment of empirical magnetic field models at geosynchronous orbit during magnetic storms

    Get PDF
    [1] We evaluate the performance of recent empirical magnetic field models (Tsyganenko, 1996, 2002a, 2002b; Tsyganenko and Sitnov, 2005, hereafter referred to as T96, T02 and TS05, respectively) during magnetic storm times including both pre- and post-storm intervals. The model outputs are compared with GOES observations of the magnetic field at geosynchronous orbit. In the case of a major magnetic storm, the T96 and T02 models predict anomalously strong negative Bz at geostationary orbit on the nightside due to input values exceeding the model limits, whereas a comprehensive magnetic field data survey using GOES does not support that prediction. On the basis of additional comparisons using 52 storm events, we discuss the strengths and limitations of each model. Furthermore, we quantify the performance of individual models at predicting geostationary magnetic fields as a function of local time, Dst, and storm phase. Compared to the earlier models (T96 and T02), the most recent storm-time model (TS05) has the best overall performance across the entire range of local times, storm levels, and storm phases at geostationary orbit. The field residuals between TS05 and GOES are small (≤3 nT) compared to the intrinsic short time-scale magnetic variability of the geostationary environment even during non-storm conditions (∼24 nT). Finally, we demonstrate how field model errors may affect radiation belt studies when estimating electron phase space density

    Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model

    Get PDF
    [1] To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5–8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere

    Solar pond power plant feasibility study for Davis, California

    Get PDF
    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept

    Storm‐time configuration of the inner magnetosphere: Lyon‐Fedder‐Mobarry MHD code, Tsyganenko model, and GOES observations

    Get PDF
    [1] We compare global magnetohydrodynamic (MHD) simulation results with an empirical model and observations to understand the magnetic field configuration and plasma distribution in the inner magnetosphere, especially during geomagnetic storms. The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth\u27s magnetospheric topology and dynamics by solving the equations of ideal MHD. Quantitative comparisons of simulated events with observations reveal strengths and possible limitations and suggest ways to improve the LFM code. Here we present a case study that compares the LFM code to both a semiempirical magnetic field model and to geosynchronous measurements from GOES satellites. During a magnetic cloud event, the simulation and model predictions compare well qualitatively with observations, except during storm main phase. Quantitative statistical studies of the MHD simulation shows that MHD field lines are consistently under-stretched, especially during storm time (Dst \u3c −20 nT) on the nightside, a likely consequence of an insufficient representation of the inner magnetosphere current systems in ideal MHD. We discuss two approaches for improving the LFM result: increasing the simulation spatial resolution and coupling LFM with a ring current model based on drift physics (i.e., the Rice Convection Model (RCM)). We show that a higher spatial resolution LFM code better predicts geosynchronous magnetic fields (not only the average Bz component but also higher-frequency fluctuations driven by the solar wind). An early version of the LFM/RCM coupled code, which runs so far only for idealized events, yields a much-improved ring current, quantifiable by decreased field strengths at all local times compared to the LFM-only code

    Topological Speed Limits to Network Synchronization

    Full text link
    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and stays finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.Comment: 5 pages, 3 figure
    corecore