13,964 research outputs found

    Nonlinear lattice model of viscoelastic Mode III fracture

    Full text link
    We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the existence and stability of steady-state Mode III cracks. We show that the hysteretic behavior at small driving is very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset of the instability, the system settles into a exactly period-doubled state, presumably connected to the aforementioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation

    Does the continuum theory of dynamic fracture work?

    Full text link
    We investigate the validity of the Linear Elastic Fracture Mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent Stress Intensity Factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here is not consistent with the theoretical expectation.Comment: 4 page

    The Universal Gaussian in Soliton Tails

    Full text link
    We show that in a large class of equations, solitons formed from generic initial conditions do not have infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it possible to treat solitons as localized, individual objects. For the case of the KdV equation, we show how the Gaussian decay emerges in the inverse scattering formalism.Comment: 4 pages, 2 figures, revtex with eps

    Perforation of Bowel Associated with Blunt Abdominal Trauma in Children

    Get PDF
    Motor vehicle accidents remain the commonest cause of abdominal trauma in children, but there are many situations that expose the child more particularly to blunt abdominal trauma. In order to avoid unnecessary delay in diagnosis, a plan of management is proposed, based on our experience with 4 cases of abdominal trauma. The need for early diagnosis is emphasised

    A Preliminary Look at the Physics Reach of a Solar Neutrino TPC: Time-Independent Two Neutrino Oscillations

    Get PDF
    This paper will discuss the physics reach of a solar neutrino TPC containing many tons of He4 under high pressure. Particular attention is given to the LMA and SMA solutions, which are allowed by current data, and which are characterized by a lack of time-dependent phenomena (either summer-winter or day-night asymmetries). In this case, the physics of neutrino masses and mixing is all contained in the energy dependence of the electron neutrino survival probability, (or in its reciprocal, the electron neutrino disappearance probability).Comment: 19 pages, 12 figure

    Arrested Cracks in Nonlinear Lattice Models of Brittle Fracture

    Full text link
    We generalize lattice models of brittle fracture to arbitrary nonlinear force laws and study the existence of arrested semi-infinite cracks. Unlike what is seen in the discontinuous case studied to date, the range in driving displacement for which these arrested cracks exist is very small. Also, our results indicate that small changes in the vicinity of the crack tip can have an extremely large effect on arrested cracks. Finally, we briefly discuss the possible relevance of our findings to recent experiments.Comment: submitted to PRE, Rapid Communication

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    Quantum network of neutral atom clocks

    Get PDF
    We propose a protocol for creating a fully entangled GHZ-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.Comment: 13 pages, 11 figure

    Optical Superradiance from Nuclear Spin Environment of Single Photon Emitters

    Full text link
    We show that superradiant optical emission can be observed from the polarized nuclear spin ensemble surrounding a single photon emitter such as a single quantum dot (QD) or Nitrogen-Vacancy (NV) center. The superradiant light is emitted under optical pumping conditions and would be observable with realistic experimental parameters.Comment: 4+ pages, 3 figures, considerably rewritten, conclusions unchanged, accepted versio
    • …
    corecore