242 research outputs found

    Promoter–enhancer looping at the PPARγ2 locus during adipogenic differentiation requires the Prmt5 methyltransferase

    Get PDF
    PPARγ2 is a critical lineage-determining transcription factor that is essential for adipogenic differentiation. Here we report characterization of the three-dimensional structure of the PPARγ2 locus after the onset of adipogenic differentiation and the mechanisms by which it forms. We identified a differentiation-dependent loop between the PPARγ2 promoter and an enhancer sequence 10 kb upstream that forms at the onset of PPARγ2 expression. The arginine methyltransferase Prmt5 was required for loop formation, and overexpression of Prmt5 resulted in premature loop formation and earlier onset of PPARγ2 expression. Kinetic studies of regulatory factor interactions at the PPARγ2 promoter and enhancer revealed enhanced interaction of Prmt5 with the promoter that preceded stable association of Prmt5 with enhancer sequences. Prmt5 knockdown prevented binding of both MED1, a subunit of Mediator complex that facilitates enhancer–promoter interactions, and Brg1, the ATPase of the mammalian SWI/SNF chromatin remodeling enzyme required for PPARγ2 activation and adipogenic differentiation. The data indicate a dynamic association of Prmt5 with the regulatory sequences of the PPARγ2 gene that facilitates differentiation-dependent, three-dimensional organization of the locus. In addition, other differentiation-specific, long-range chromatin interactions showed Prmt5-dependence, indicating a more general role for Prmt5 in mediating higher-order chromatin connections in differentiating adipocytes.National Institutes of Health (NIH) [DK084278 to S.S., A.N.I., GM56244 to A.N.I., F32DK082263 to S.E.L., DK32520 to UMass Medical School Diabetes and Endocrine Research Center]. Funding for open access charge: Institutional funds

    Management of High-Risk Hypercholesterolemic Patients and PCSK9 Inhibitors Reimbursement Policies: Data from a Cohort of Italian Hypercholesterolemic Outpatients.

    Get PDF
    Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are effective and safe lipid-lowering treatments (LLT). The primary endpoint of the study was to assess the prevalence of patients eligible for treatment with PCSK9 inhibitors in a real-life clinical setting in Italy before and after the recent enlargement of reimbursement criteria. For this study, we consecutively considered the clinical record forms of 6231 outpatients consecutively admitted at the Lipid Clinic of the University Hospital of Bologna (Italy). Patients were stratified according to whether they were allowed or not allowed to access to treatment with PCSK9 inhibitors based on national prescription criteria and reimbursement rules issued by the Italian Medicines Agency (AIFA). According to the indications of the European Medicines Agency (EMA), 986 patients were candidates to treatment with PCSK9 inhibitors. However, following the prescription criteria issued by AIFA, only 180 patients were allowed to access to PCSK9 inhibitors before reimbursement criteria enlargement while 322 (+14.4%) with the current ones. Based on our observations, low-cost tailored therapeutic interventions for individual patients can significantly reduce the number of patients potentially needing treatment with PCSK9 inhibitors among those who are not allowed to access to the treatment. The application of enlarged reimbursement criteria for PCSK9 inhibitors could mildly improve possibility to adequately manage high-risk hypercholesterolemic subjects in the setting of an outpatient lipid clinic

    Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods

    Get PDF
    Apolipoprotein(a) (apo(a)) is the protein component that defines lipoprotein(a) (Lp(a)) particles and is encoded by the LPA gene. The apo(a) is extremely heterogeneous in size due to the copy number variations in the kringle-IV type 2 (KIV2) domains. In this review, we aim to discuss the role of genetics in establishing Lp(a) as a risk factor for coronary heart disease (CHD) by examining a series of molecular biology techniques aimed at identifying the best strategy for a possible application in clinical research and practice, according to the current gold standard

    Subcutaneous administration of tocilizumab is effective in myointimal hyperplasia remodelling in refractory Takayasu arteritis

    Get PDF
    Takayasu arteritis (TA) is a chronic inflammatory disease of unknown origin that involves large and mediumsized arteries, primarily the aorta and its major branches. TA is a therapeutic challenge because corticosteroids and conventional immunosuppressive agents are not always effective or safe. Interleukin 6 (IL-6) has emerged as a key cytokine in the pathogenesis of TA and its serum levels have been shown to well correlate with disease activity. We report a 19 years old female patient with TA refractory to conventional immunosuppressive agents, successfully treated with subcutaneous tocilizumab, a humanized monoclonal antibody against IL-6 receptor, in which ultrasonography (US) was used as imaging tool to follow up the patient. Currently, clinical indices of disease activity, inflammatory markers, carotid intima media thickness (cIMT) as well as carotid pulse wave velocity (cPWV) normalised, while the prednisone dosage has been tapered. Tocilizumab appears to be a good option in refractory TA, with a remarkable steroid-sparing effect. In addition, it seems to have a favourable effect on endothelial function, as it improved cIMT and PWV

    The PPARgamma locus makes long-range chromatin interactions with selected tissue-specific gene loci during adipocyte differentiation in a protein kinase A dependent manner

    Get PDF
    Differentiation signaling results in reprogramming of cellular gene expression that leads to morphological changes and functional specialization of a precursor cell. This global change in gene expression involves temporal regulation of differentiation-specific genes that are located throughout the genome, raising the idea that genome structure may also be re-organized during cell differentiation to facilitate regulated gene expression. Using in vitro adipocyte differentiation as a model, we explored whether gene organization within the nucleus is altered upon exposure of precursor cells to signaling molecules that induce adipogenesis. The peroxisome proliferator-activated receptor gamma (PPARgamma) nuclear hormone receptor is a master determinant of adipogenesis and is required for adipose differentiation. We utilized the chromosome conformation capture (3C) assay to determine whether the position of the PPARgamma locus relative to other adipogenic genes is changed during differentiation. We report that the PPARgamma2 promoter is transiently positioned in proximity to the promoters of genes encoding adipokines and lipid droplet associated proteins at 6 hours post-differentiation, a time that precedes expression of any of these genes. In contrast, the PPARgamma2 promoter was not in proximity to the EF1alpha promoter, which drives expression of a constitutively active, housekeeping gene that encodes a translation elongation factor, nor was the PPARgamma2 promoter in proximity to the promoter driving the expression of the C/EBPalpha regulatory protein. The formation of the long-range, intergenic interactions involving the PPARgamma2 promoter required the regulatory factor C/EBPbeta, elevated cyclic AMP (cAMP) levels, and protein kinase A (PKA) signaling. We conclude that genome organization is dynamically remodeled in response to adipogenic signaling, and we speculate that these transient inter-genic interactions may be formed for the purposes of selecting some of the transcriptionally silent tissue-specific loci for subsequent transcriptional activation

    Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells

    Get PDF
    Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer

    BRG-1 is required for RB-mediated cell cycle arrest

    Get PDF
    The antiproliferative action of the retinoblastoma tumor suppressor protein, RB, is disrupted in the majority of human cancers. Disruption of RB activity occurs through several disparate mechanisms, including viral oncoprotein binding, deregulated RB phosphorylation, and mutation of the RB gene. Here we report disruption of RB-signaling in tumor cells through loss of a critical cooperating factor. We have previously reported that C33A cells fail to undergo cell cycle inhibition in the presence of constitutively active RB (PSM-RB). To determine how C33A cells evade RB-mediated arrest, cell fusion experiments were performed with RB-sensitive cells. The resulting fusions were arrested by PSM-RB, indicating that C33A cells lack a factor required for RB-mediated cell cycle inhibition. C33A cells are deficient in BRG-1, a SWI/SNF family member known to stimulate RB activity. Consistent with BRG-1 deficiency underlying resistance to RB-mediated arrest, we identified two other BRG-1-deficient cell lines (SW13 and PANC-1) and demonstrate that these tumor lines are also resistant to cell cycle inhibition by PSM-RB and p16ink4a, which activates endogenous RB. In cell lines lacking BRG-1, we noted a profound defect in RB-mediated repression of the cyclin A promoter. This deficiency in RB-mediated transcriptional repression and cell cycle inhibition was rescued through ectopic coexpression of BRG-1. We also demonstrate that 3T3-derived cells, which inducibly express a dominant-negative BRG-1, arrest by PSM-RB and p16ink4a in the absence of dominant-negative BRG-1 expression; however, cell cycle arrest was abrogated on induction of dominant-negative BRG-1. These findings demonstrate that BRG-1 loss renders cells resistant to RB-mediated cell cycle progression, and that disruption of RB signaling through loss of cooperating factors occurs in cancer cells

    Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions.

    Get PDF
    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.This work was supported by the National Science Foundation through Grant No. ACI-1642336 (to F.P. and A.W.G.). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1548562. J.B. is grateful for a Heisenberg professorship funded by the DFG (No. Be3264/11-2). E.Sz. would like to acknowledge the support of the Peterhouse Research Studentship and the support of BP International Centre for Advanced Materials (ICAM). M.C. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 677013-HBMAP). G.I. acknowledges funding from the Fondazione Zegn

    Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer

    Get PDF
    Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention
    corecore