7,095 research outputs found

    A Comparison of Newman\u27s Numerical Technique and deBoor\u27s Algorithm

    Get PDF
    Newman\u27s numerical technique (1-4) has been used extensivelyto solve two-point boundary value problems consistingof coupled, ordinary differential equations. Unfortunately,his method does not always yield a solution to asystem of independent equations. Sometimes his algorithm(BAND) signals incorrectly that the coefficientmatrix is singular (e.g., DETERMINANT = 0 AT J = 2),and no solution is obtained to the system of equations.This problem sometimes occurs when one tries to useBAND to solve a two-point boundary value problemwhich consists of a set of mixed order ordinary differentialequations. For example, the battery model equations presentedrecently by Evans and White (5) are representativeof this type of equation set. This problem is referred tohere as the zero determinant problem. The cause of thisproblem with BAND is due to the way in which the algorithmin BAND is used to solve the system of equations.The problem can be avoided by using alternate differenceexpressions or coordinate systems, or by using algorithmsby deBoor (6) or IMSL (7)

    Chiral Symmetry Breaking in Quenched Massive Strong-Coupling QED4_4

    Get PDF
    We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched QED4_4. Results are compared for three different fermion-photon proper vertex {\it Ans\"{a}tze\/}: bare γμ\gamma^\mu, minimal Ball-Chiu, and Curtis-Pennington. The procedure is straightforward to implement and numerically stable. This is the first study in which this technique is used and it should prove useful in future DSE studies, whenever renormalization is required in numerical work.Comment: REVTEX 3.0, 15 pages plus 7 uuencoded PostScript figure

    Permanent-magnet atom chips for the study of long, thin atom clouds

    Get PDF
    Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation

    Topological quantum D-branes and wild embeddings from exotic smooth R^4

    Full text link
    This is the next step of uncovering the relation between string theory and exotic smooth R^4. Exotic smoothness of R^4 is correlated with D6 brane charges in IIA string theory. We construct wild embeddings of spheres and relate them to a class of topological quantum Dp-branes as well to KK theory. These branes emerge when there are non-trivial NS-NS H-fluxes where the topological classes are determined by wild embeddings S^2 -> S^3. Then wild embeddings of higher dimensional pp-complexes into S^n correspond to Dp-branes. These wild embeddings as constructed by using gropes are basic objects to understand exotic smoothness as well Casson handles. Next we build C*-algebras corresponding to the embeddings. Finally we consider topological quantum D-branes as those which emerge from wild embeddings in question. We construct an action for these quantum D-branes and show that the classical limit agrees with the Born-Infeld action such that flat branes = usual embeddings.Comment: 18 pages, 1 figur

    Johnson-Kendall-Roberts theory applied to living cells

    Get PDF
    Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion energies of soft slightly deformable material. Little is known about the validity of this theory on complex systems such as living cells. We have addressed this problem using a depletion controlled cell adhesion and measured the force necessary to separate the cells with a micropipette technique. We show that the cytoskeleton can provide the cells with a 3D structure that is sufficiently elastic and has a sufficiently low deformability for JKR theory to be valid. When the cytoskeleton is disrupted, JKR theory is no longer applicable

    Spontaneous Chiral-Symmetry Breaking in Three-Dimensional QED with a Chern--Simons Term

    Full text link
    In three-dimensional QED with a Chern--Simons term we study the phase structure associated with chiral-symmetry breaking in the framework of the Schwinger--Dyson equation. We give detailed analyses on the analytical and numerical solutions for the Schwinger--Dyson equation of the fermion propagator, where the nonlocal gauge-fixing procedure is adopted to avoid wave-function renormalization for the fermion. In the absence of the Chern--Simons term, there exists a finite critical number of four-component fermion flavors, at which a continuous (infinite-order) chiral phase transition takes place and below which the chiral symmetry is spontaneously broken. In the presence of the Chern--Simons term, we find that the spontaneous chiral-symmetry-breaking transition continues to exist, but the type of phase transition turns into a discontinuous first-order transition. A simple stability argument is given based on the effective potential, whose stationary point gives the solution of the Schwinger-Dyson equation.Comment: 34 pages, revtex, with 9 postscriptfigures appended (uuencoded
    • …
    corecore