3,842 research outputs found

    Behavioral indicators of pilot workload

    Get PDF
    Using a technique that requires a subject to consult an imagined or remembered spatial array while performing a visual task, a reliable reduction in the number of directed eye movements that are available for the acquisition of visual information is shown

    In The Town Where Jane and I Were Born

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5757/thumbnail.jp

    Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies

    Get PDF
    Resistance to chemotherapies, particularly to anticancer treatments, is an increasing medical concern. Among the many mechanisms at work in cancers, one of the most important is the selection of tumor cells expressing resistance genes or phenotypes. Motivated by the theory of mutation-selection in adaptive evolution, we propose a model based on a continuous variable that represents the expression level of a resistance gene (or genes, yielding a phenotype) influencing in healthy and tumor cells birth/death rates, effects of chemotherapies (both cytotoxic and cytostatic) and mutations. We extend previous work by demonstrating how qualitatively different actions of chemotherapeutic and cytostatic treatments may induce different levels of resistance. The mathematical interest of our study is in the formalism of constrained Hamilton-Jacobi equations in the framework of viscosity solutions. We derive the long-term temporal dynamics of the fittest traits in the regime of small mutations. In the context of adaptive cancer management, we also analyse whether an optimal drug level is better than the maximal tolerated dose

    Galilean invariance and homogeneous anisotropic randomly stirred flows

    Full text link
    The Ward-Takahashi (WT) identities for incompressible flow implied by Galilean invariance are derived for the randomly forced Navier-Stokes equation (NSE), in which both the mean and fluctuating velocity components are explicitly present. The consequences of Galilean invariance for the vertex renormalization are drawn from this identity.Comment: REVTeX 4, 4 pages, no figures. To appear as a Brief Report in the Physical Review

    Complex noise in diffusion-limited reactions of replicating and competing species

    Full text link
    We derive exact Langevin-type equations governing quasispecies dynamics. The inherent multiplicative noise has both real and imaginary parts. The numerical simulation of the underlying complex stochastic partial differential equations is carried out employing the Cholesky decomposition for the noise covariance matrix. This noise produces unavoidable spatio-temporal density fluctuations about the mean field value. In two dimensions, the fluctuations are suppressed only when the diffusion time scale is much smaller than the amplification time scale for the master species.Comment: 10 pages, 2 composite figure

    Energy Density of Non-Minimally Coupled Scalar Field Cosmologies

    Get PDF
    Scalar fields coupled to gravity via ξRΦ2\xi R {\Phi}^2 in arbitrary Friedmann-Robertson-Walker backgrounds can be represented by an effective flat space field theory. We derive an expression for the scalar energy density where the effective scalar mass becomes an explicit function of ξ\xi and the scale factor. The scalar quartic self-coupling gets shifted and can vanish for a particular choice of ξ\xi. Gravitationally induced symmetry breaking and de-stabilization are possible in this theory.Comment: 18 pages in standard Late

    Statistical interpretations and new findings on Variation in Cancer Risk Among Tissues

    Get PDF
    Tomasetti and Vogelstein (2015a) find that the incidence of a set of cancer types is correlated with the total number of normal stem cell divisions. Here, we separate the effects of standing stem cell number (i.e., organ or tissue size) and per stem cell lifetime replication rate. We show that each has a statistically significant and independent effect on explaining variation in cancer incidence over the 31 cases considered by Tomasetti and Vogelstein. When considering the total number of stem cell divisions and when removing cases associated with disease or carcinogens, we find that cancer incidence attains a plateau of approximately 0.6% incidence for the cases considered by these authors. We further demonstrate that grouping by anatomical site explains most of the remaining variation in risk between cancer types. This new analysis suggests that cancer risk depends not only on the number of stem cell divisions but varies enormously (\sim10,000 times) depending on the stem cell's environment. Future research should investigate how tissue characteristics (anatomical site, type, size, stem cell divisions) explain cancer incidence over a wider range of cancers, to what extent different tissues express specific protective mechanisms, and whether any differential protection can be attributed to natural selection

    Electromagnetic waves in a wormhole geometry

    Get PDF
    We investigate the propagation of electromagnetic waves through a static wormhole. It is shown that the problem can be reduced to a one-dimensional Schr\"odinger-like equation with a barrier-type potential. Using numerical methods, we calculate the transmission coefficient as a function of the energy. We also discuss the polarization of the outgoing radiation due to this gravitational scattering.Comment: LaTex file, 5 pages, 2 figures, one reference added, accepted for publication in PR
    corecore