198 research outputs found

    Markedly lower follow-up rate after liver biopsy in patients with non-alcoholic fatty liver diseases than those with viral hepatitis in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with non-alcoholic fatty liver diseases (NAFLD) are recommended to have periodic follow-up exams because these patients are at increased risk of the presence of non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis or hepatocellular carcinoma. We investigated the follow-up status of NAFLD patients after a liver biopsy examination.</p> <p>Methods</p> <p>We compared the follow-up rates of NAFLD patients who had received an ultrasonography-guided liver biopsy and patients who had received a liver biopsy for chronic viral hepatitis (hepatitis B or C).</p> <p>Results</p> <p>The 1- and 3-year follow-up rates after the liver biopsy were 92.7% and 88.3% for patients with chronic HBV infection, and 93.4% and 88.2% for patients with chronic HCV infection, respectively. In contrast, the follow-up rates for NAFLD patients were 77.6% and 49.9%, respectively, which were significantly lower than those of patients with chronic viral hepatitis (<it>p </it>< 0.0001). Among NAFLD patients, the respective 1- and 3-year follow-up rates were 73.0% and 44.6% for patients with simple steatosis and 80.0% and 52.4% for patients with NASH based on a pathologic diagnosis, without significant difference between these two subgroups (<it>p </it>= 0.5202).</p> <p>Conclusions</p> <p>The outpatient-based follow-up rate after a liver biopsy was significantly lower in NAFLD patients compared to patients with chronic viral hepatitis, regardless of the presence of NASH. It is important to determine how to maintain regular hospital visits for NAFLD patients, preventing patient attrition.</p

    Regulation of Calcium-Permeable TRPV2 Channel by Insulin in Pancreatic β-Cells

    Get PDF
    OBJECTIVE—Calcium-permeable cation channel TRPV2 is expressed in pancreatic β-cells. We investigated regulation and function of TRPV2 in β-cells

    The difficulty of eliminating donor leukocyte microchimerism in rat recipients bearing established organ allografts

    Get PDF
    Background. Unequivocal eradication of donor leukocyte microchimerism from recipients of long-surviving organ transplants has never been reported. Here we describe a drastic attempt to accomplish this objective. Methods. In control experiments, a rank order of microchimerism and of associated donor specific nonreactivity was produced in Brown-Norway (BN) rats by transplantation of Lewis (LEW) liver, bone marrow cell (BMC) and heart allografts under a brief course of tacrolimus. The degree of microchimerism at 60 and 110 days was estimated with semiquanitative immunocytochemical and PCR techniques. Tolerance at 110 days was assessed in the different control groups by challenge transplantation of naïve LEW hearts. In parallel experimental groups, an attempt was made to eliminate microchimerism from the BN recipients. The animals were submitted at 60 days to 9.5-Gy total body irradiation (TBI), reconstituted immediately with naïve BN BMC, and tested for donor specific nonreactivity by LEW heart transplantation at 110 days. Results. After the TBI-reconstitution at 60 days, microchimerism was undetectable in BMC recipients at 110 days, significantly reduced in heart recipients, and least affected in liver recipients. Except in liver recipients, abrogation of LEW-specific nonreactivity was demonstrated by rejection of the priming grafts, or by rejection of the challenge heart grafts, and by in vitro immune assay. Conclusions. It is difficult to eliminate microchimerism in organ recipients once the donor cells have settled into tissue niches. Copyright © 2006 by Lippincott Williams & Wilkins

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively

    Amantadine for Dyskinesias in Parkinson's Disease: A Randomized Controlled Trial

    Get PDF
    BACKGROUND: Dyskinesias are some of the major motor complications that impair quality of life for patients with Parkinson's disease. The purpose of the present study was to investigate the efficacy of amantadine in Parkinson's disease patients suffering from dyskinesias. METHODS: In this multi-center, double-blind, randomized, placebo-controlled, cross-over trial, 36 patients with Parkinson's disease and dyskinesias were randomized, and 62 interventions, which included amantadine (300 mg/day) or placebo treatment for 27 days, were analyzed. At 15 days after washout, the treatments were crossed over. The primary outcome measure was the changes in the Rush Dyskinesia Rating Scale (RDRS) during each treatment period. The secondary outcome measures were changes in the Unified Parkinson's Disease Rating Scale part IVa (UPDRS-IVa, dyskinesias), part IVb (motor fluctuations), and part III (motor function). RESULTS: RDRS improved in 64% and 16% of patients treated with amantadine or placebo, respectively, with significant differences between treatments. The adjusted odds-ratio for improvement by amantadine was 6.7 (95% confidence interval, 1.4 to 31.5). UPDRS-IVa was improved to a significantly greater degree in amantadine-treated patients [mean (SD) of 1.83 (1.56)] compared with placebo-treated patients [0.03 (1.51)]. However, there were no significant effects on UPDRS-IVb or III scores. CONCLUSIONS: Results from the present study demonstrated that amantadine exhibited efficacious effects against dyskinesias in 60-70% of patients. TRIAL REGISTRATION: UMIN Clinical Trial Registry UMIN000000780

    Molecular and Antigenic Characterization of Reassortant H3N2 Viruses from Turkeys with a Unique Constellation of Pandemic H1N1 Internal Genes

    Get PDF
    Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro

    Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis.

    Get PDF
    Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection

    Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis

    Get PDF
    A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice.Total internal reflection fluorescence imaging of CDKAL1 KO β cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K(+)-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca(2+) concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K(+) (K(ATP)) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets.We provide the first report describing the function of CDKAL1 in β cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in β cells by facilitating ATP generation, K(ATP) channel responsiveness and the subsequent activity of Ca(2+) channels through pathways other than CDK5-mediated regulation
    corecore