3,195 research outputs found

    Cleaning the USNO-B Catalog through automatic detection of optical artifacts

    Full text link
    The USNO-B Catalog contains spurious entries that are caused by diffraction spikes and circular reflection halos around bright stars in the original imaging data. These spurious entries appear in the Catalog as if they were real stars; they are confusing for some scientific tasks. The spurious entries can be identified by simple computer vision techniques because they produce repeatable patterns on the sky. Some techniques employed here are variants of the Hough transform, one of which is sensitive to (two-dimensional) overdensities of faint stars in thin right-angle cross patterns centered on bright (<13 \mag) stars, and one of which is sensitive to thin annular overdensities centered on very bright (<7 \mag) stars. After enforcing conservative statistical requirements on spurious-entry identifications, we find that of the 1,042,618,261 entries in the USNO-B Catalog, 24,148,382 of them (2.3 \percent) are identified as spurious by diffraction-spike criteria and 196,133 (0.02 \percent) are identified as spurious by reflection-halo criteria. The spurious entries are often detected in more than 2 bands and are not overwhelmingly outliers in any photometric properties; they therefore cannot be rejected easily on other grounds, i.e., without the use of computer vision techniques. We demonstrate our method, and return to the community in electronic form a table of spurious entries in the Catalog.Comment: published in A

    Pictures of Synthetic Biology: A reflective discussion of the representation of Synthetic Biology (SB) in the German-language media and by SB experts

    Get PDF
    This article is concerned with the representation of Synthetic Biology in the media and by biotechnology experts. An analysis was made of German-language media articles published between 2004 and 2008, and interviews with biotechnology-experts at the Synthetic Biology conference SB 3.0 in Zurich 2007. The results have been reflected in terms of the definition of Synthetic Biology, applications of Synthetic Biology and the perspectives of opportunities and risks. In the media, Synthetic Biology is represented as a new scientific field of biology with an engineering-like thinking, while the scientists interviewed mostly define Synthetic Biology as contrary to nature and the natural system. Media articles present Synthetic Biology broadly with positive potential and inform the publics less about the potential risks than about the benefits of Synthetic Biology. In contrast, the experts interviewed reflect more on the risks than the opportunities of Synthetic Biology. Both used metaphors to describe Synthetic Biology and its aspects

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    Global analysis of Solar neutrino oscillation evidence including SNO and implications for Borexino

    Get PDF
    An updated analysis of all available neutrino oscillation evidence in Solar experiments including the latest SNOSNO data is presented. Predictions for total rates and day-night asymmetry in Borexino are calculated. Our analysis features the use of exhaustive computation of the neutrino oscillation probabilities and the use of an improved statistical χ2\chi^2 minimization. In the framework of two neutrino oscillations we conclude that the best fit to the data is obtained in the LMA region with parameters (\Delta m^2, \tan^2\theta) = (5.2 \times 10^{-5} \eV^2, 0.47), (χmin2/n=0.82\chi^2_{min}/n=0.82, n=38n=38 degrees of freedom). Although less favored, solutions in the LOW and VAC regions are still possible with a reasonable statistical significance. The best possible solution in the SMA region gets as maximum a statistical significance as low as ∼3\sim 3%. We study the implications of these results for the prospects of Borexino and the possibility of discriminating between the different solutions. The expected normalized Borexino signal is 0.62 at the best fit LMA solution while the DN asymmetry is negligible (approximately 10−510^{-5}). In the LOW region the signal is in the range ∼0.6−0.7\sim 0.6-0.7 at 90% confidence level while the asymmetry is ≃1−20\simeq 1-20%. As a consequence, the combined Borexino measurements of the total event rate with a error below ±5−10\pm 5-10% and day-night total rate asymmetry with a precision comparable to the one of SuperKamiokande, will have a strong chance of distinguishing or at least strongly favoring one of the Solar neutrino solutions provided by present data.Comment: 24 pages, 9 figures, better resolution figures are available upon reques

    Short Term Effects of Hurricane Irma and Cyanobacterial Blooms On Ammonium Cycling Along a Freshwater-Estuarine Continuum In South Florida

    Get PDF
    Lacustrine and coastal systems are vulnerable to the increasing number and intensity of tropical storms driven by climate change. Strong winds associated with tropical storms can mobilize nutrients in sediments and alter nitrogen and phosphorus cycling, leading to amplification of preexisting conditions, such as eutrophication and cyanobacterial blooms (cyanoHABs). In 2016, Florida declared a State of Emergency within and downstream of Lake Okeechobee (LO) due to toxic cyanobacterial blooms (primarily Microcystis). The blooms originated in LO, but flood control measures released water from LO to the brackish St. Lucie Estuary (SLE). In September 2017, Hurricane Irma traversed the Florida peninsula with sustained winds exceeding 160 km h–1, generating torrential rains over the watershed. We quantified ammonium (NH4+) regeneration and potential uptake rates, and Microcystis toxin gene (mcyD) abundance in LO and SLE during the massive bloom in July 2016, the bloom in August 2017 (2 weeks before Irma), and 10 days after Hurricane Irma landfall. In 2016, cyanoHABs were present in both LO and SLE, and potential NH4+ uptake rates were high in both systems. In 2017, the bloom was constrained to LO, potential NH4+ uptake rates in LO exceeded those in SLE, and mcyD gene abundance was greater in LO than SLE. Post Hurricane Irma, potential NH4+ uptake rates decreased significantly in LO and SLE, while mcyD gene abundance decreased in LO and increased slightly in SLE. Average NH4+ regeneration rates could support 25–40% of water column potential NH4+ demand in the lake and, when extrapolated to the entire LO water column, exceeded external nitrogen loading. These results emphasize the importance of internal NH4+ recycling for bloom expansion and toxicity in the lake and downstream estuaries. In 2018, the cyanobacterial bloom in the Okeechobee region was one of the largest recorded and is presumed to be driven by the aftermath of Hurricane Irma. Large-scale blooms have also been observed in SLE, likely due to LO flushing and decreased salinity post-hurricane. Thus, results from this study support predictions that increased frequency and strength of tropical storms will lead to more intense blooms in aquatic systems

    Hurricane Disturbance Stimulated Nitrification and Altered Ammonia Oxidizer Community Structure in Lake Okeechobee and St. Lucie Estuary (Florida)

    Get PDF
    © Copyright © 2020 Hampel, McCarthy, Aalto and Newell. Nitrification is an important biological link between oxidized and reduced forms of nitrogen (N). The efficiency of nitrification plays a key role in mitigating excess N in eutrophic systems, including those with cyanobacterial harmful algal blooms (cyanoHABs), since it can be closely coupled with denitrification and removal of excess N. Recent work suggests that competition for ammonium (NH4+) between ammonia oxidizers and cyanoHABs can help determine microbial community structure. Nitrification rates and ammonia-oxidizing archaeal (AOA) and bacterial (AOB) community composition and gene abundances were quantified in Lake Okeechobee and St. Lucie Estuary in southern Florida (United States). We sampled during cyanobacterial (Microcystis) blooms in July 2016 and August 2017 (2 weeks before Hurricane Irma) and 10 days after Hurricane Irma made landfall. Nitrification rates were low during cyanobacterial blooms in Lake Okeechobee and St. Lucie Estuary, while low bloom conditions in St. Lucie Estuary coincided with greater nitrification rates. Nitrification rates in the lake were correlated (R2 = 0.94; p = 0.006) with AOA amoA abundance. Following the hurricane, nitrification rates increased by an order of magnitude, suggesting that nitrifiers outcompeted cyanobacteria for NH4+ under turbid, poor light conditions. After Irma, AOA and AOB abundances increased in St. Lucie Estuary, while only AOB increased in Lake Okeechobee. AOA sequences clustered into three major lineages: Nitrosopumilales (NP), Nitrososphaerales (NS), and Nitrosotaleales (NT). Many of the lake OTUs placed within the uncultured and uncharacterized NS δ and NT β clades, suggesting that these taxa are ecologically important along this eutrophic, lacustrine to estuarine continuum. After the hurricane, the AOA community shifted toward dominance by freshwater clades in St. Lucie Estuary and terrestrial genera in Lake Okeechobee, likely due to high rainfall and subsequent increased turbidity and freshwater loading from the lake into the estuary. AOB community structure was not affected by the disturbance. AOA communities were consistently more diverse than AOB, despite fewer sequences recovered, including new, unclassified, eutrophic ecotypes, suggesting a wider ecological biogeography than the oligotrophic niche originally posited. These results and other recent reports contradict the early hypothesis that AOB dominate ammonia oxidation in high-nutrient or terrestrial-influenced systems

    GNO Solar Neutrino Observations: Results for GNOI

    Get PDF
    We report the first GNO solar neutrino results for the measuring period GNOI, solar exposure time May 20, 1998 till January 12, 2000. In the present analysis, counting results for solar runs SR1 - SR19 were used till April 4, 2000. With counting completed for all but the last 3 runs (SR17 - SR19), the GNO I result is [65.8 +10.2 -9.6 (stat.) +3.4 -3.6 (syst.)]SNU (1sigma) or [65.8 + 10.7 -10.2 (incl. syst.)]SNU (1sigma) with errors combined. This may be compared to the result for Gallex(I-IV), which is [77.5 +7.6 -7.8 (incl. syst.)] SNU (1sigma). A combined result from both GNOI and Gallex(I-IV) together is [74.1 + 6.7 -6.8 (incl. syst.)] SNU (1sigma).Comment: submitted to Physics Letters B, June 2000. PACS: 26.65. +t ; 14.60 Pq. Corresponding author: [email protected] ; [email protected]

    A Lithium Experiment in the Program of Solar Neutrino Research

    Full text link
    The experiments sensitive to pp-neutrinos from the Sun are very perspective for the precise measurement of a mixing angle θ12\theta_{12}. A ν\nu e−^{-} scattering experiment (Xmass) and/or a charged-current experiment (the indium detector) can measure the flux of electron pp-neutrinos. One can find the total flux of pp-neutrinos from a luminosity constraint after the contribution of 7^7Be and CNO neutrinos to the total luminosity of the Sun are measured. The radiochemical experiment utilizing a lithium target has the high sensitivity to the CNO neutrinos, thus, it has a good promise for the precise measurement of a mixing angle and for the test of a current theory of the evolution of the stars.Comment: 6 pages, 2 figures, 1 table, A report made by A.Kopylov at International Conference NANP-2005, June 2005, Dubna, Russi
    • …
    corecore