760 research outputs found

    Effect of hydrogen adsorption on the quasiparticle spectra of graphene

    Full text link
    We use the non-interacting tight-binding model to study the effect of isolated hydrogen adsorbates on the quasiparticle spectra of single-layer graphene. Using the Green's function approach, we obtain analytic expressions for the local density of states and the spectral function of hydrogen-doped graphene, which are also numerically evaluated and plotted. Our results are relevant for the interpretation of scanning tunneling microscopy and angle-resolved photoemission spectroscopy data of functionalized graphene.Comment: 4 pages, 3 figures, minor corrections to tex

    Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    Full text link
    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.Comment: 8 pages, 3 figures, 1 tabl

    Surgical treatment versus medical treatment in hypertrophic obstructive cardiomyopathy

    Get PDF
    Sixty-three patients operated upon for HOCM and 49 patients selected for non-surgical treatment have been followed-up for 15 years. Pre-operatively, surgical patients had a higher left ventricular outflow tract gradient at rest and, on the average, more severe symptoms than non-surgical patients. Septal myectomy relieved the pressure gradient and symptoms more consistently than long-term treatment with β-blockers or verapamil. Within an average observation time of 7½ years, there was late deterioration or death in almost half of the non-surgical patients but in less than one-quarter in the operated patients. The 10 year mortality rate was 80% in the surgical series and 71% in the non-surgical series. In operated patients, pre-operative symptomatic status was significantly related to early and late mortality. In medically treated patients, mortality was unrelated to symptoms; however, it was significantly lower in patients receiving long term treatment with β-blockers or verapamil. In conclusion, a high basal pressure gradient associated to limiting symptoms is a clear-cut indication for surgery. Other indications are more debatable. In medically treated patients, long-term administration of β-blockers or verapamil is beneficial even without symptoms as it appears to improve prognosi

    Light-Trap: A SiPM Upgrade for Very High Energy Astronomy and Beyond

    Full text link
    With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. Id:81
    • …
    corecore