774 research outputs found

    Adsorption energies of NH 3

    Full text link

    Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer's disease

    Get PDF
    Although recent clinical trials targeting amyloid-β (Aβ) in Alzheimer's disease (AD) have shown promising results, there is increasing evidence suggesting that understanding alternative disease pathways that interact with Aβ metabolism and amyloid pathology might be important to halt the clinical deterioration. In particular, there is evidence supporting a critical role of astroglial activation and astrocytosis in AD. However, to this date, no studies have assessed whether astrocytosis is independently related to either Aβ or tau pathology, respectively, in vivo. To address this question, we determined the levels of the astrocytic marker glial fibrillary acidic protein (GFAP) in plasma and cerebrospinal fluid (CSF) of 217 Aβ-negative cognitively unimpaired individuals, 71 Aβ-positive cognitively unimpaired individuals, 78 Aβ-positive cognitively impaired individuals, 63 Aβ-negative cognitively impaired individuals and 75 patients with a non-AD neurodegenerative disorder from the Swedish BioFINDER-2 study. Subjects underwent longitudinal Aβ (18F-flutemetamol) and tau (18F-RO948) positron emission tomography (PET) as well as cognitive testing. We found that plasma GFAP concentration was significantly increased in all Aβ-positive groups compared with subjects without Aβ pathology (p < 0.01). In addition, there were significant associations between plasma GFAP with higher Aβ-PET signal in all Aβ-positive groups, but also in cognitively normal individuals with normal Aβ values (p < 0.001), which remained significant after controlling for tau-PET signal. Furthermore, plasma GFAP could predict Aβ-PET positivity with an area under the curve of 0.76, which was greater than the performance achieved by CSF GFAP (0.69) and other glial markers (CSF YKL-40: 0.64, sTREM2: 0.71). Although correlations were also observed between tau-PET and plasma GFAP, these were no longer significant after controlling for Aβ-PET. In contrast to plasma GFAP, CSF GFAP concentration was significantly increased in non-AD patients compared to other groups (p < 0.05) and correlated with Aβ-PET only in Aβ-positive cognitively impaired individuals (p = 0.005). Finally, plasma GFAP was associated with both longitudinal Aβ-PET and cognitive decline, and mediated the effect of Aβ-PET on tau-PET burden, suggesting that astrocytosis secondary to Aβ aggregation might promote tau accumulation. Altogether, these findings indicate that plasma GFAP is an early marker associated with brain Aβ pathology but not tau aggregation, even in cognitively normal individuals with a normal Aβ status. This suggests that plasma GFAP should be incorporated in current hypothetical models of AD pathogenesis and be used as a non-invasive and accessible tool to detect early astrocytosis secondary to Aβ pathology

    Op naar kerngebieden voor weidevogels in Nederland : werkdocument met randvoorwaarden en handreiking

    Get PDF
    Een methode is uitgewerkt om kerngebieden te identificeren voor weidevogels. Als gidssoort is de grutto gebruikt, implicaties voor de andere weidevogelsoorten zijn aangeduid. Als zoekgebied voor kerngebieden zijn aangeduid gebieden die voldoen aan minumumdichtheden (15 dan wel 30 bp/100 ha). Aan de hand van trendgegevens is geanalyseerd welke factoren bepalend zijn voor de aantalsontwikkeling. De resultaten hiervan zijn als randvoorwaarden gehanteerd voor de nadere invulling van de kerngebieden. Met een metapopulatiemodel is verkend aan welke ruimtelijke voorwaarden kerngebieden moeten voldoen: o.a. omvang en onderlinge afstanden, in relatie tot de ruimtelijke kwaliteit. Scenarioberekeningen zijn uitgevoerd naar verschillende ruimtelijke invullingen. Er is een handreiking opgesteld als voorbeeld hoe kerngebieden in de praktijk geidentificeerd en uitgewerkt zouden kunnen worden

    N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry

    Get PDF
    Background: Axonal degeneration is considered to play a major role in the development of clinical disability in multiple sclerosis (MS). N-AcetylAspartic Acid (NAA) is a neuron-specific marker constantly identified in MR-spectroscopy studies of the normal and MS brain. To our knowledge there are no studies available that evaluated NAA in cerebrospinal fluid (CSF) as a possible marker for disease severity. Objective: To evaluate CSF concentrations of NAA in MS in relation to disease phenotype, clinical measures of disability and MRI markers of disease burden. Methods: NAA concentrations were determined in CSF of 46 patients with MS (26 relapsing remitting (RRMS), 12 secondary progressive (SPMS) and 8 primary progressive (PPMS)). Prior to lumbar puncture, MS-patients underwent MRI and clinical examination, including the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC). Additionally, CSF concentrations of NAA were determined in 12 patients with other neurological diseases (OND). Results: Median CSF NAA concentration was 0.74 (IQR: 0.59-0.94) in RRMS , 0.54 (IQR: 0.35-0.73) in SPMS and 0.83 μmol/l (IQR: 0.56-1.03) in PPMS patients. SPMS patients had a significantly lower NAA concentration than RRMS patients. NAA concentrations correlated with EDSS (r = )0.37, p = 0.016), MSFC (r = 0.41, p = 0.010), normalised brain volume (r = 0.49, p = 0.001), T2 lesion load (r = )0.35, p = 0.021) and black hole lesion load (r = )0.47, p = 0.002). No differences were observed between OND (median: 0.57 IQR: 0.28-0.73) and MS patients. Conclusions: CSF NAA concentration in MS patients is related to clinical performance and MRI measures of disease burden and may therefore be an important neuron specific marker of disease severity and possibly progression

    Evaluation of a novel immunoassay to detect p-Tau Thr127 in the CSF to distinguish Alzheimer disease from other dementias

    Get PDF
    OBJECTIVE: To investigate whether p-tau T217 assay in cerebrospinal fluid (CSF) can distinguish Alzheimer's disease from other dementias and healthy controls. METHODS: We developed and validated a novel Simoa immunoassay to detect p-tau T217 in CSF. There was a total of 190 participants from three cohorts with AD (n = 77) and other neurodegenerative diseases (n = 69) as well as healthy subjects (n = 44). RESULTS: The p-tau T217 assay (cut-off 242 pg/ml) identified AD subjects with accuracy of 90%, with 78% positive predictive value (PPV), 97% negative predictive value (NPV), 93% sensitivity, 88% specificity compared favorably with p-tau T181 ELISA (52 pg/ml) showing 78% accuracy, 58% PPV, 98% NPV, 71% specificity, 97% sensitivity. The assay distinguished AD patients from age-matched healthy subjects (cut-off 163 pg/ml, sensitivity 98%, specificity 93%) similarly to p-tau T181 ELISA (cut-off 60 pg/ml, 96% sensitivity and 86% specificity). In AD patients, we found a strong correlation between p-tau T217-tau and p-tau T181, t-tau and Aβ40 but not with Aβ42. CONCLUSIONS: This study demonstrates that p-tau T217 displayed better diagnostic accuracy than p-tau T181. The data suggests that the new p-tau T217 assay has a potential as an AD diagnostic test in the clinical evaluation. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that a CSF immunoassay for p-tau T217 distinguishes AD from other dementias and healthy controls
    corecore