103 research outputs found

    Solar Neutrinos from CNO Electron Capture

    Full text link
    The neutrino flux from the sun is predicted to have a CNO-cycle contribution as well as the known pp-chain component. Previously, only the fluxes from beta+ decays of 13N, 15O, and 17F have been calculated in detail. Another neutrino component that has not been widely considered is electron capture on these nuclei. We calculate the number of interactions in several solar neutrino detectors due to neutrinos from electron capture on 13N, 15O, and 17F, within the context of the Standard Solar Model. We also discuss possible non-standard models where the CNO flux is increased.Comment: 4 pages, 1 figure, submitted to Phys. Rev. C; v2 has minor changes including integration over solar volume and addition of missing reference to previous continuum electron capture calculation; v3 has minor changes including addition of references and the correction of a small (about 1%) numerical error in the table

    Corporate financing decisions: UK survey evidence

    Get PDF
    Despite theoretical developments in recent years, our understanding of corporate capital structure remains incomplete. Prior empirical research has been dominated by archival regression studies which are limited in their ability to fully reflect the diversity found in practice. The present paper reports on a comprehensive survey of corporate financing decision-making in UK listed companies. A key finding is that firms are heterogeneous in their capital structure policies. About half of the firms seek to maintain a target debt level, consistent with trade-off theory, but 60 per cent claim to follow a financing hierarchy, consistent with pecking order theory. These two theories are not viewed by respondents as either mutually exclusive or exhaustive. Many of the theoretical determinants of debt levels are widely accepted by respondents, in particular the importance of interest tax shield, financial distress, agency costs and also, at least implicitly, information asymmetry. Results also indicate that cross-country institutional differences have a significant impact on financial decisions

    Scintillation time dependence and pulse shape discrimination in liquid argon

    Full text link
    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background and statistics-limited level of electronic recoil contamination to be 7.6×1077.6\times10^{-7} between 60 and 128 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 72 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination using the measured scintillation time dependence and predict the sensitivity to WIMP-nucleon scattering in three configurations of a liquid argon dark matter detector.Comment: 13 pages, 14 figures, Revision 3 (published

    A Monte Carlo simulation of the Sudbury Neutrino Observatory proportional counters

    Get PDF
    The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNO's third-phase 8B solar-neutrino measurement.Comment: 38 pages; submitted to the New Journal of Physic

    A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory

    Get PDF
    A search has been made for neutrinos from the hep reaction in the Sun and from the diffus

    Low Multiplicity Burst Search at the Sudbury Neutrino Observatory

    Get PDF
    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (November 1999 - May 2001), when the detector was filled with heavy water, and Phase II (July 2001 - August 2003), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Comment: 11 pages, 4 figures, submitted to Ap

    Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.Comment: Submitted to Phys. Rev. Let

    Electron Antineutrino Search at the Sudbury Neutrino Observatory

    Get PDF
    Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have been set based on the \nuebar charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for \nuebar's from the Sun and other potential sources. Both differential and integral limits on the \nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2} s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3 -- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in which only the two neutrons are detected. Assuming a \nuebar spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.
    corecore