6,309 research outputs found

    Effect of Local Electron-Electron Correlation in Hydrogen-like Impurities in Ge

    Get PDF
    We have studied the electronic and local magnetic structure of the hydrogen interstitial impurity at the tetrahedral site in diamond-structure Ge, using an empirical tight binding + dynamical mean field theory approach because within the local density approximation (LDA) Ge has no gap. We first establish that within LDA the 1s spectral density bifurcates due to entanglement with the four neighboring sp3 antibonding orbitals, providing an unanticipated richness of behavior in determining under what conditions a local moment hyperdeep donor or Anderson impurity will result, or on the other hand a gap state might appear. Using a supercell approach, we show that the spectrum, the occupation, and the local moment of the impurity state displays a strong dependence on the strength of the local on-site Coulomb interaction U, the H-Ge hopping amplitude, the depth of the bare 1s energy level epsilon_H, and we address to some extent the impurity concentration dependence. In the isolated impurity, strong interaction regime a local moment emerges over most of the parameter ranges indicating magnetic activity, and spectral density structure very near (or in) the gap suggests possible electrical activity in this regime.Comment: 9 pages, 5 figure

    Effects of 3-d and 4-d-transition metal substitutional impurities on the electronic properties of CrO2

    Full text link
    We present first-principles based density functional theory calculations of the electronic and magnetic structure of CrO2 with 3d (Ti through Cu) and 4d (Zr through Ag) substitutional impurities. We find that the half-metallicity of CrO2 remains intact for all of the calculated substitutions. We also observe two periodic trends as a function of the number of valence electrons: if the substituted atom has six or fewer valence electrons (Ti-Cr or Zr-Mo), the number of down spin electrons associated with the impurity ion is zero, resulting in ferromagnetic (FM) alignment of the impurity magnetic moment with the magnetization of the CrO2 host. For substituent atoms with eight to ten (Fe-Ni or Ru-Pd with the exception of Ni), the number of down spin electrons contributed by the impurity ion remains fixed at three as the number contributed to the majority increases from one to three resulting in antiferromagnetic (AFM) alignment between impurity moment and host magnetization. The origin of this variation is the grouping of the impurity states into 3 states with approximate "t2g" symmetry and 2 states with approximate "eg" symmetry. Ni is an exception to the rule because a Jahn-Teller-like distortion causes a splitting of the Ni eg states. For Mn and Tc, which have 8 valence electrons, the zero down spin and 3 down spin configurations are very close in energy. For Cu and Ag atoms, which have 11 valence electrons, the energy is minimized when the substituent ion contributes 5 Abstract down-spin electrons. We find that the interatomic exchange interactions are reduced for all substitutions except for the case of Fe for which a modest enhancement is calculated for interactions along certain crystallographic directions.Comment: 26 pages, 10 figures, 2 table

    Femtosecond probing of bimolecular reactions: The collision complex

    Get PDF
    Progress has been made in probing the femtosecond dynamics of transition states of chemical reactions.(1) The "half-collision" case of unimolecular reactions has been experimentally investigated for a number of systems and much theoretical work has already been developed.(2) For bimolecular reactions, the case of full collision, the zero of time is a problem which makes the femtosecond temporal resolution of the dynamics a difficult task

    Femtosecond real-time probing of reactions. VIII. The bimolecular reaction Br+I2

    Get PDF
    In this paper, we discuss the experimental technique for real-time measurement of the lifetimes of the collision complex of bimolecular reactions. An application to the atom–molecule Br+I_2 reaction at two collision energies is made. Building on our earlier Communication [J. Chem. Phys. 95, 7763 (1991)], we report on the observed transients and lifetimes for the collision complex, the nature of the transition state, and the dynamics near threshold. Classical trajectory calculations provide a framework for deriving the global nature of the reactive potential energy surface, and for discussing the real-time, scattering, and asymptotic (product-state distribution) aspects of the dynamics. These experimental and theoretical results are compared with the extensive array of kinetic, crossed beam, and theoretical studies found in the literature for halogen radical–halogen molecule exchange reactions

    Theoretical investigation into the possibility of very large moments in Fe16N2

    Get PDF
    We examine the mystery of the disputed high-magnetization \alpha"-Fe16N2 phase, employing the Heyd-Scuseria-Ernzerhof screened hybrid functional method, perturbative many-body corrections through the GW approximation, and onsite Coulomb correlations through the GGA+U method. We present a first-principles computation of the effective on-site Coulomb interaction (Hubbard U) between localized 3d electrons employing the constrained random-phase approximation (cRPA), finding only somewhat stronger on-site correlations than in bcc Fe. We find that the hybrid functional method, the GW approximation, and the GGA+U method (using parameters computed from cRPA) yield an average spin moment of 2.9, 2.6 - 2.7, and 2.7 \mu_B per Fe, respectively.Comment: 8 pages, 3 figure

    Propagation of Correlations in Quantum Lattice Systems

    Full text link
    We provide a simple proof of the Lieb-Robinson bound and use it to prove the existence of the dynamics for interactions with polynomial decay. We then use our results to demonstrate that there is an upper bound on the rate at which correlations between observables with separated support can accumulate as a consequence of the dynamics.Comment: 10 page

    Biaxial fatigue loading of notched composites

    Get PDF
    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good

    Development of N/P AlGaAs free-standing top solar cells for tandem applications

    Get PDF
    The combination of a free standing AlGaAs top solar cell and an existing bottom solar cell is the highest performance, lowest risk approach to implementing the tandem cell concept. The solar cell consists of an AlGaAs substrate layer, an AlGaAs base layer, an AlGaAs emitter, and an ultra-thin AlGaAs window layer. The window layer is compositionally graded which minimizes reflection at the window layer/emitter interface and creates a built-in electric field to improve quantum response in the blue region of the spectrum. Liquid phase epitaxy (LPE) is the only viable method to produce this free standing top solar cell. Small (0.125 sq cm), transparent p/n AlGaAs top solar cells were demonstrated with optimum bandgap for combination with a silicon bottom solar cell. The efficiency of an AlGaAs/Si stack using the free standing AlGaAs device upon an existing silicon bottom solar cell is 24 pct. (1X, Air Mass Zero (AM0). The n/p AlGaAs top solar cell is being developed in order to facilitate the wiring configuration. The two terminal tandem stack will retain fit, form, and function of existing silicon solar cells. Progress in the development of large area (8 and 16 sq cm), free standing AlGaAs top solar cells is discussed

    Mars rover sample return: An exobiology science scenario

    Get PDF
    A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging

    Mars Rover Sample Return: A sample collection and analysis strategy for exobiology

    Get PDF
    For reasons defined elsewhere it is reasonable to search for biological signatures, both chemical and morphological, of extinct life on Mars. Life on Earth requries the presence of liquid water, therefore, it is important to explore sites on Mars where standing bodies of water may have once existed. Outcrops of layered deposits within the Valles Marineris appear to be ancient lake beds. Because the outcrops are well exposed, relatively shallow core samples would be very informative. The most important biological signature to detect would be organics, microfossils, or larger stromato-like structures, although the presence of cherts, carbonates, clays, and shales would be significant. In spite of the limitations of current robotics and pattern recognition, and the limitations of rover power, computation, Earth communication bandwidth, and time delays, a partial scenario was developed to implement such a scientific investigation. The rover instrumentation and the procedures and decisions and IR spectrometer are described in detail. Preliminary results from a collaborative effort are described, which indicate the rover will be able to autonomously detect stratification, and hence will ease the interpretation burden and lead to greater scientific productivity during the rover's lifetime
    corecore