29,107 research outputs found

    Spacecraft control/flexible structures interaction study

    Get PDF
    An initial study to begin development of a flight experiment to measure spacecraft control/flexible structure interactions was completed. The approach consisted of developing the equations of motion for a vehicle possessing a flexible solar array, then linearizing about some nominal motion of the craft. A set of solutions is assumed for array deflection using a continuous normal mode method and important parameters are identified. Interrelationships between these parameters, measurement techniques, and input requirements are discussed which assure minimization of special vehicle maneuvers and optimization of data to be obtained during the normal flight sequence. Limited consideration is given to flight data retrieval and processing techniques as correlated with the requirements imposed by the measurement system. Results indicate that inflight measurement of the bending and torsional mode shapes and respective frequencies, and damping ratios, is necessary. Other parameters may be measured from design data

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    Revised Huang-Yang multipolar pseudopotential

    Full text link
    A number of authors have recently pointed out inconsistencies of results obtained with the Huang-Yang multipolar pseudo-potential for low-energy scattering [K. Huang and K. C. Yang, Phys. Rev. A, v 105, 767 (1957); later revised in K. Huang, ``Statistical Mechanics'', (Wiley, New York, 1963)]. The conceptual validity of their original derivation has been questioned. Here I show that these inconsistencies are rather due to an {\em algebraic} mistake made by Huang and Yang. With the corrected error, I present the revised version of the multipolar pseudo-potential

    unreinforced masonry buildings

    Get PDF
    A recent earthquake of M=4.9 occurred on 29 October 2007 in C, ameli, Denizli, which is located in a seismically active region at southwest Anatolia, Turkey. It has caused extensive damages at unreinforced masonry buildings like many other cases observed in Turkey during other previous earthquakes. Most of the damaged structures were non-engineered, seismically deficient, unreinforced masonry buildings. This paper presents a site survey of these damaged buildings. In addition to typical masonry damages, some infrequent, event-specific damages were also observed. Reasons for the relatively wide spread damages considering the magnitude of the event are discussed in the paper

    The Attractor and the Quantum States

    Full text link
    The dissipative dynamics anticipated in the proof of 't Hooft's existence theorem -- "For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization" -- is constructed here explicitly. We propose a generalization of Liouville's classical phase space equation, incorporating dissipation and diffusion, and demonstrate that it describes the emergence of quantum states and their dynamics in the Schroedinger picture. Asymptotically, there is a stable ground state and two decoupled sets of degrees of freedom, which transform into each other under the energy-parity symmetry of Kaplan and Sundrum. They recover the familiar Hilbert space and its dual. Expectations of observables are shown to agree with the Born rule, which is not imposed a priori. This attractor mechanism is applicable in the presence of interactions, to few-body or field theories in particular.Comment: 14 pages; based on invited talk at 4th Workshop ad memoriam of Carlo Novero "Advances in Foundations of Quantum Mechanics and Quantum Information with Atoms and Photons", Torino, May 2008; submitted to Int J Qu Inf

    Nonperturbative Matching for Field Theories with Heavy Fermions

    Full text link
    We examine a paradox, suggested by Banks and Dabholkar, concerning nonperturbative effects in an effective field theory which is obtained by integrating out a generation of heavy fermions, where the heavy fermion masses arise from Yukawa couplings. They argue that light fermions in the effective theory appear to decay via instanton processes, whereas their decay is forbidden in the full theory. We resolve this paradox by showing that such processes in fact do not occur in the effective theory, due to matching corrections which cause the relevant light field configurations to have infinite action.Comment: 10 pages, no figures, uses harvmac, Harvard University Preprint HUTP-93/A03

    A major advance in powder metallurgy

    Get PDF
    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed

    Representations of the Multicast Network Problem

    Full text link
    We approach the problem of linear network coding for multicast networks from different perspectives. We introduce the notion of the coding points of a network, which are edges of the network where messages combine and coding occurs. We give an integer linear program that leads to choices of paths through the network that minimize the number of coding points. We introduce the code graph of a network, a simplified directed graph that maintains the information essential to understanding the coding properties of the network. One of the main problems in network coding is to understand when the capacity of a multicast network is achieved with linear network coding over a finite field of size q. We explain how this problem can be interpreted in terms of rational points on certain algebraic varieties.Comment: 24 pages, 19 figure

    Supersymmetry breaking in a warped slice with Majorana-type masses

    Get PDF
    We study the five-dimensional (5D) supergravity compactified on an orbifold S^1/Z_2, where the U(1)_R symmetry is gauged by the graviphoton with Z_2-even coupling. In contrast to the case of gauging with Z_2-odd coupling, this class of models has Majorana-type masses and allows the Scherk-Schwarz (SS) twist even in the warped spacetime. Starting from the off-shell formulation, we show that the supersymmetry is always broken in an orbifold slice of AdS_5, irrespective of the value of the SS twist parameter. We analyze the spectra of gaugino and gravitino in such background, and find the SS twist can provide sizable effects on them in the small warping region.Comment: 1+20 pages, 6 figure

    A heavy Higgs boson from flavor and electroweak symmetry breaking unification

    Full text link
    We present a unified picture of flavor and electroweak symmetry breaking based on a nonlinear sigma model spontaneously broken at the TeV scale. Flavor and Higgs bosons arise as pseudo-Goldstone modes. Explicit collective symmetry breaking yields stable vacuum expectation values and masses protected at one loop by the little-Higgs mechanism. The coupling to the fermions generates well-definite mass textures--according to a U(1) global flavor symmetry--that correctly reproduce the mass hierarchies and mixings of quarks and leptons. The model is more constrained than usual little-Higgs models because of bounds on weak and flavor physics. The main experimental signatures testable at the LHC are a rather large mass m_{h^0} = 317\pm 80 GeV for the (lightest) Higgs boson and a characteristic spectrum of new bosons and fermions at the TeV scale.Comment: 5 page
    corecore