527 research outputs found

    Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England

    Get PDF
    Tributyltin (TBT), an aqueous biocide derived from antifouling paint pollution, is known to have impacted coastal marine ecosystems, and has been reported in the sediment of the Norfolk and Suffolk Broads, a network of rivers and shallow lakes in eastern England. In the marine environment, the 1987 TBT ban has resulted in expanded use of alternative biocides, raising the question of whether these products too have impacted the Broads ecosystem and freshwaters in general. Here we examine the lake sediment record in the Norfolk and Suffolk Broads for contamination by copper (Cu) (as an active biocide agent) and zinc (Zn) (as a component of booster biocides), to assess their occurrence and potential for causing environmental harm in freshwater ecosystems. We find that, after the introduction of leisure boating, there is a statistically significant difference in Cu enrichment between heavily and lightly boated sites, while no such difference exists prior to this time. At the heavily boated sites the onset of Cu enrichment coincides with a period of rapid increase in leisure boating. Such enrichment is maintained to the present day, with some evidence of continued increase. We conclude that Cu-based antifouling has measurably contaminated lakes exposed to boating, at concentrations high enough to cause ecological harm. Similar findings can be expected at other boated freshwater ecosystems elsewhere in the world

    Between a reef and a hard place: capacity to map the next coral reef catastrophe

    Get PDF
    Increasing sea surface temperature and extreme heat events pose the greatest threat to coral reefs globally, with trends exceeding previous norms. The resultant mass bleaching events, such as those evidenced on the Great Barrier Reef in 2016, 2017, and 2020 have substantial ecological costs in addition to economic and social costs. Advancing remote (nanosatellites, rapid revisit traditional satellites) and in-field (drones) technological capabilities, cloud data processing, and analysis, coupled with existing infrastructure and in-field monitoring programs, have the potential to provide cost-effective and timely information to managers allowing them to better understand changes on reefs and apply effective remediation. Within a risk management framework for monitoring coral bleaching, we present an overview of how remote sensing can be used throughout the whole risk management cycle and highlight the role technological advancement has in earth observations of coral reefs for bleaching events

    Исследование микроструктуры безобжиговых периклазоуглеродистых огнеупоров при использовании в качестве заполнителя различного вида периклаза

    Get PDF
    У статті представлено результати досліджень мікроструктури периклазовуглецевих зразків, у яких в якості наповнювача використовували різні види периклазу. Петрографічні дослідження показали, що зразки щільні та міцні, як на плавленому, так і на спеченому периклазі.In clause the results of researches of microstructure magnesia-carbon refractors are submitted, at which in quality filler used different kind magnesia. Microstructures of samples strong and dense, both on melted, and on sintered periclase have shown, that

    Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    Get PDF
    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy

    Low-surface energy surfactants with branched hydrocarbon architectures

    Get PDF
    International audienceSurface tensiometry and small-angle neutron scattering have been used to characterize a new class of low-surface energy surfactants (LSESs), "hedgehog" surfactants. These surfactants are based on highly branched hydrocarbon (HC) chains as replacements for environmentally hazardous fluorocarbon surfactants and polymers. Tensiometric analyses indicate that a subtle structural modification in the tails and headgroup results in significant effects on limiting surface tensions γcmc at the critical micelle concentration: a higher level of branching and an increased counterion size promote an effective reduction of surface tension to low values for HC surfactants (γcmc 24 mN m-1). These LSESs present a new class of potentially very important materials, which form lamellar aggregates in aqueous solutions independent of dilution

    Modification of forests by people means only 40% of remaining forests have high ecosystem integrity

    Get PDF
    Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally
    corecore