2,533 research outputs found

    Associating with art: a network model of aesthetic effects

    Get PDF
    In recent years, understanding psychological constructs as network processes has gained considerable traction in the social sciences. In this paper, we propose the aesthetic effects network (AEN) as a novel way to conceptualize aesthetic experience. The AEN represents an associative process where having one association leads to the next association, generating an overall aesthetic experience. In art theory, associations of this kind are referred to as aesthetic effects. The AEN provides an explicit account of a specific cognitive process involved in aesthetic experience. We first outline the AEN and discuss empirical results (Study 1, N=255) to explore what can be gained from this approach. Second, in Study 2 (N=133, pre-registered) we follow calls in the literature to substantiate network theories by using an experimental manipulation, and found evidence in favor of the AEN over other alternatives. The AEN provides a basis for future studies that can apply a network perspective to different aesthetic experiences and processes. This perspective takes a process-based approach to aesthetic experience, where aesthetic experience is represented as an active interaction between viewer and artwork. If we want to understand how people experience art, it is central to know why people have different experiences with the same artworks, and, also, why people have similar experiences when looking at different artworks. Our proposed network perspective offers a new way to approach and potentially answer these questions.Stress and Psychopatholog

    Understanding Aesthetic Evaluation using Deep Learning

    Get PDF
    A bottleneck in any evolutionary art system is aesthetic evaluation. Many different methods have been proposed to automate the evaluation of aesthetics, including measures of symmetry, coherence, complexity, contrast and grouping. The interactive genetic algorithm (IGA) relies on human-in-the-loop, subjective evaluation of aesthetics, but limits possibilities for large search due to user fatigue and small population sizes. In this paper we look at how recent advances in deep learning can assist in automating personal aesthetic judgement. Using a leading artist's computer art dataset, we use dimensionality reduction methods to visualise both genotype and phenotype space in order to support the exploration of new territory in any generative system. Convolutional Neural Networks trained on the user's prior aesthetic evaluations are used to suggest new possibilities similar or between known high quality genotype-phenotype mappings

    On Metal-Insulator Transitions due to Self-Doping

    Full text link
    We investigate the influence of an unoccupied band on the transport properties of a strongly correlated electron system. For that purpose, additional orbitals are coupled to a Hubbard model via hybridization. The filling is one electron per site. Depending on the position of the additional band, both, a metal--to--insulator and an insulator--to--metal transition occur with increasing hybridization. The latter transition from a Mott insulator into a metal via ``self--doping'' was recently proposed to explain the low carrier concentration in Yb4As3\rm Yb_4As_3. We suggest a restrictive parameter regime for this transition making use of exact results in various limits. The predicted absence of the self--doping transition for nested Fermi surfaces is confirmed by means of an unrestricted Hartree--Fock approximation and an exact diagonalization study in one dimension. In the general case metal--insulator phase diagrams are obtained within the slave--boson mean--field and the alloy--analog approximation.Comment: 9 pages, Revtex, 6 postscript figure

    Modularity Facilitates Flexible Tuning of Plastic and Evolutionary Gene Expression Responses during Early Divergence

    Get PDF
    Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions. Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate plastic and population (evolutionary) effects in expression networks using small salmonid populations as a model system. We show that plastic and population effects were highly variable among the six identified modules and that the plastic effects explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the population effects using a Q(ST)-F-ST comparison across 16,622 annotated transcripts revealed that gene expression followed neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes coding for early developmental traits that have been previously identified as important phenotypic traits in thermal responses in the same model system indicating that coexpression analysis can capture expression patterns underlying ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of gene expression variance in the early stages of thermal adaptation in this system

    Theory of Electronic Ferroelectricity

    Full text link
    We present a theory of the linear and nonlinear optical characteristics of the insulating phase of the Falicov-Kimball model within the self-consistent mean-field approximation. The Coulomb attraction between the itinerant d-electrons and the localized f-holes gives rise to a built-in coherence between the d and f-states, which breaks the inversion symmetry of the underlying crystal, leading to: (1) electronic ferroelectricity, (2) ferroelectric resonance, and (3) a nonvanishing susceptibility for second-harmonic generation. As experimental tests of such a built-in coherence in mixed-valent compounds we propose measurements of the static dielectric constant, the microwave absorption spectrum, and the dynamic second-order susceptibility.Comment: 15 pages, 5 PostScript figures, submitted to Physical Review

    Comparing angular and curved shapes in terms of implicit associations and approach/avoidance responses.

    Get PDF
    Most people prefer smoothly curved shapes over more angular shapes. We investigated the origin of this effect using abstract shapes and implicit measures of semantic association and preference. In Experiment 1 we used a multidimensional Implicit Association Test (IAT) to verify the strength of the association of curved and angular polygons with danger (safe vs. danger words), valence (positive vs. negative words) and gender (female vs. male names). Results showed that curved polygons were associated with safe and positive concepts and with female names, whereas angular polygons were associated with danger and negative concepts and with male names. Experiment 2 used a different implicit measure, which avoided any need to categorise the stimuli. Using a revised version of the Stimulus Response Compatibility (SRC) task we tested with a stick figure (i.e., the manikin) approach and avoidance reactions to curved and angular polygons. We found that RTs for approaching vs. avoiding angular polygons did not differ, even in the condition where the angles were more pronounced. By contrast participants were faster and more accurate when moving the manikin towards curved shapes. Experiment 2 suggests that preference for curvature cannot derive entirely from an association of angles with threat. We conclude that smoothly curved contours make these abstract shapes more pleasant. Further studies are needed to clarify the nature of such a preference

    Fiberoptic endoscopic evaluation of swallowing in intensive care unit patients

    Get PDF
    Aspiration in critically ill patients frequently causes severe co-morbidity. We evaluated a diagnostic protocol using routine FEES in critically ill patients at risk to develop aspiration following extubation. We instructed intensive care unit physicians on specific risk factors for and clinical signs of aspiration following extubation in critically ill patients and offered bedside FEES for such patients. Over a 45-month period, we were called to perform 913 endoscopic examinations in 553 patients. Silent aspiration or aspiration with acute symptoms (cough or gag reflex as the bolus passed into the trachea) was detected in 69.3% of all patients. Prolonged non-oral feeding via a naso-gastric tube was initiated in 49.7% of all patients. In 13.2% of patients, a percutaneous endoscopic gastrostomy was initiated as a result of FEES findings, and in 6.3% an additional tracheotomy to prevent aspiration had to be initiated. In 59 out of 258 patients (22.9%), tracheotomies were closed, and 30.7% of all 553 patients could be managed with the immediate onset of an oral diet and compensatory treatment procedures. Additional radiological examinations were not required. FEES in critically ill patients allows for a rapid evaluation of deglutition and for the immediate initiation of symptom-related rehabilitation or for an early resumption of oral feeding

    Kondo screening and exhaustion in the periodic Anderson model

    Full text link
    We investigate the paramagnetic periodic Anderson model using the dynamical mean-field theory in combination with the modified perturbation theory which interpolates between the weak and strong coupling limits. For the symmetric PAM, the ground state is always a singlet state. However, as function of the hybridization strength, a crossover from collective to local Kondo screening is found. Reducing the number of conduction electrons, the local Kondo singlets remain stable. The unpaired f-electrons dominate the physics of the system. For very low conduction electron densities, a large increase of the effective mass of the quasiparticles is visible, which is interpreted as the approach of the Mott-Hubbard transition.Comment: 10 pages, 8 figures, accepted by Phys. Rev.

    Sex and Gender Differences in Travel-Associated Disease

    Get PDF
    Background. No systematic studies exist on sex and gender differences across a broad range of travel-associated diseases. Methods. Travel and tropical medicine GeoSentinel clinics worldwide contributed prospective, standardized data on 58,908 patients with travel-associated illness to a central database from 1 March 1997 through 31 October 2007. We evaluated sex and gender differences in health outcomes and in demographic characteristics. Statistical significance for crude analysis of dichotomous variables was determined using hi; 2 tests with calculation of odds ratios (ORs) and 95% confidence intervals (CIs). The main outcome measure was proportionate morbidity of specific diagnoses in men and women. The analyses were adjusted for age, travel duration, pretravel encounter, reason for travel, and geographical region visited. Results. We found statistically significant (Pµ.001) differences in morbidity by sex. Women are proportionately more likely than men to present with acute diarrhea (OR, 1.13; 95% CI, 1.09-1.38), chronic diarrhea (OR, 1.28; 95% CI, 1.19-1.37), irritable bowel syndrome (OR, 1.39; 95% CI, 1.24-1.57), upper respiratory tract infection (OR, 1.23; 95% CI, 1.14-1.33); urinary tract infection (OR, 4.01; 95% CI, 3.34-4.71), psychological stressors (OR, 1.3; 95% CI, 1.14-1.48), oral and dental conditions, or adverse reactions to medication. Women are proportionately less likely to have febrile illnesses (OR, 0.15; 95% CI, 0.10-0.21); vector-borne diseases, such as malaria (OR, 0.46; 95% CI, 0.41-0.51), leishmaniasis, or rickettsioses (OR, 0.57; 95% CI, 0.43-0.74); sexually transmitted infections (OR, 0.68; 95% CI 0.58-0.81); viral hepatitis (OR, 0.34; 95% CI, 0.21-0.54); or noninfectious problems, including cardiovascular disease, acute mountain sickness, and frostbite. Women are statistically significantly more likely to obtain pretravel advice (OR, 1.28; 95% CI, 1.23-1.32), and ill female travelers are less likely than ill male travelers to be hospitalized (OR, 0.45; 95% CI, 0.42-0.49). Conclusions. Men and women present with different profiles of travel-related morbidity. Preventive travel medicine and future travel medicine research need to address gender-specific intervention strategies and differential susceptibility to diseas

    Dynamical mean-field study of ferromagnetism in the periodic Anderson model

    Full text link
    The ferromagnetic phase diagram of the periodic Anderson model is calculated using dynamical mean-field theory in combination with the modified perturbation theory. Concentrating on the intermediate valence regime, the phase boundaries are established as function of the total electron density, the position of the atomic level and the hybridization strength. The main contribution to the magnetic moment stems from the f-electrons. The conduction band polarization is, depending on the system parameters either parallel or antiparallel to the f-magnetization. By investigating the densities of states, one observes that the change of sign of the conduction band polarization is closely connected to the hybridization gap, which is only apparent in the case of almost complete polarization of the f-electrons. Finite-temperature calculations are also performed, the Curie temperature as function of electron density and f-level position are determined. In the intermediate-valence regime, the phase transitions are found to be of second order.Comment: 12 pages, 11 figures, accepted by Phys. Rev.
    • …
    corecore