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Abstract

Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions.
Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the
early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed
modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression
responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate
plasticand population (evolutionary) effects in expression networks using small salmonid populations as a model system. We
show that plastic and population effects were highly variable among the six identified modules and that the plastic effects
explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the
population effects using a Qst - FsT comparison across 16,622 annotated transcripts revealed that gene expression followed
neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes
coding for early developmental traits that have been previously identified as important phenotypic traits in thermal
responses in the same model system indicating that coexpression analysis can capture expression patterns underlying
ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression
levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of
gene expression variance in the early stages of thermal adaptation in this system.
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Introduction (Franks and Hoffmann 2012). Rapid thermal adaptation

The relative roles of plasticity and evolutionary adaptation
have gained considerable interest in recent evolutionary ge-
netics research (Gienapp et al. 2008; Chevin et al. 2010;
Merila 2012; Crozier and Hutchings 2014; Merila and
Hendry 2014; Reusch 2014; DeBiasse and Kelly 2016). This
is also tightly associated with a fundamental understanding of
how populations adapt to rapid environmental changes

may play a crucial role in future population persistence, par-
ticularly for ectotherms living in isolated habitats and thus
unable to migrate to suitable thermal conditions (Franks and
Hoffmann 2012; Narum et al. 2013). Rapid ecological
responses to rising temperatures have been documented for
several species, but the genetic mechanisms underlying
these responses remain relatively poorly understood
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(Gienapp et al. 2008; Shaw and Etterson 2012; Merila and
Hendry 2014). In particular, the relative roles of plastic and
evolutionary components underlying rapid ecological
responses have remained challenging to demonstrate
(Gienapp et al. 2008; Merila 2012; Merila and Hendry
2014). Plasticity, commonly understood as a capacity of the
same genotype to express alternative phenotypes within the
same generation, is widely acknowledged to produce rapid
responses to new environmental conditions (Price et al. 2003;
Crispo 2007; Fusco and Minelli 2010; Forsman 2015). Rapid
genetic evolution in few generations has been demonstrated
in a variety of model systems, challenging the traditional view
of evolution as a slow process (Messer et al. 2016). Thus, there
is potential for both processes to underlie rapid responses to
abrupt environmental changes. According to current views,
plasticity and evolution are not mutually exclusive, but they
may interact during the adaptation to a new environment
(Ghalambor et al. 2007; Ehrenreich and Pfennig 2016).

Several scenarios have been proposed to explain how plas-
ticity and evolutionary responses might evolve during the
course of adaptation (Pigliucci et al. 2006; Crispo 2007;
Schlichting and Wund 2014; Ehrenreich and Pfennig 2016;
Hendry 2016). The initial response under novel environmental
conditions might involve only a plastic response. Modeling,
empirical, and conceptual studies suggest that phenotypic
plasticity enhances fitness, thus providing the capacity for sur-
vival (DeWitt et al. 1998; Price et al. 2003; Chevin et al. 2010;
Fierst 2011; Draghi and Whitlock 2012; Lande 2015; Murren
etal. 2015; Hendry 2016). Phenotypic plasticity may result in a
nearly optimal phenotype, which is subsequently refined
through natural selection when there is genetic variation in
the same direction as the plastic response. As a result of this
process, traits may become constitutively expressed, a phe-
nomenon commonly known as genetic assimilation, or the
environmental sensitivity may be maintained or increased
(Baldwin effect) (Waddington 1953; Pigliucci et al. 2006;
Crispo 2007; Schlichting and Wund 2014; Ehrenreich and
Pfennig 2016; Schneider and Meyer 2017). Genetic assimila-
tion may evolve when plasticity is, for example, costly and
subsequent constitutive expression is favored, whereas the
Baldwin effect may be favored under conditions in which
maintaining plasticity is beneficial (Crispo 2007; Schlichting
and Wund 2014). For example, environmental heterogeneity
favors plasticity when the environmental cue is predictable
(DeWitt et al. 1998; Crispo 2007, Hendry 2016).
Furthermore, if plasticity drives the population to a new opti-
mum in the new environment, then genotypes may also be
shielded from natural selection, thereby constraining or slow-
ing genetic evolution (Price et al. 2003; Ghalambor et al.
2007; Hendry 2016; Schneider and Meyer 2017). Plasticity
may also promote genetic evolution when the plastic re-
sponse is maladaptive for favoring genetic compensation,
known as counter-gradient variation (Conover and Schultz
1995; Morris and Rogers 2013; Hendry 2016).

Gene expression and its regulation is one of the key mo-
lecular mechanisms underlying plastic and evolutionary
responses (Whitehead and Crawford 2006; Lépez-Maury
et al. 2008; Romero et al. 2012; Alvarez et al. 2015;
DeBiasse and Kelly 2016). Epigenetic regulation via environ-
mental stimuli may trigger plastic responses, whereas an evo-
lutionary response may involve changes in regulatory
elements (Hoekstra and Coyne 2007). Gene expression can
show considerable flexibility when organisms are exposed to
environmental gradients within the same generation, but it is
also involved in long-term adaptation (Loépez-Maury et al.
2008). Gene expression plasticity can be estimated using a
genomic reaction norm approach by exposing populations
to environmental variables in experimental settings. The slope
of the genomic reaction norm can be informative about the
magnitude of plasticity, and the genotype-environment inter-
action indicates genetic variation in plasticity (Aubin-Horth
and Renn 2009). Estimating evolutionary responses in gene
expression remains a challenge, reflecting the lack of an ap-
propriate null model for separating variance as a result of
neutral divergence from natural selection (Fraser 2011,
Harrison et al. 2012; DeBiasse and Kelly 2016).
Furthermore, methods using phylogenetic relationships to in-
fer selection in expression data might not be applicable to
closely related populations (Rohlfs et al. 2014). Qst-Fst (or
Pst for phenotypic data) comparisons are widely used to infer
local adaptation in phenotypic traits but have been applied
relatively rarely to “omics” data (Leinonen et al. 2013). In this
approach, the inference of adaptive evolution is based on the
presumably neutral distribution of the Fst estimated from ge-
netic markers to which the distribution of Qs is contrasted.
The Qs estimates outside the Fsr distribution are putative
candidates for natural selection (Leinonen et al. 2013).
Modern sequencing technologies enable the simultaneous
collection of gene expression and genetic variation data for
a large number of molecular phenotypes, providing a mean-
ingful starting point for estimating the evolutionary forces
affecting expression divergence (De Wit et al. 2015).

Similarly, large gene expression data sets coupled with in
silico methods for identifying coexpressed gene networks or
modules enable a systems genetics approach, even in non
model species (Soyer and O'Malley 2013; Feltus 2014).
Analyses of coexpressed gene networks have been widely
used in medical genetics but are also gaining popularity in
evolutionary genetics (Langfelder and Horvath 2008; Feltus
2014; Ruprecht et al. 2017). The rationale behind in silico
coexpression gene network analysis is that gene expression
correlation may reveal functionally related genes belonging to
the same biological pathway (Langfelder and Horvath 2007,
2008). Furthermore, the expression variance of genes belong-
ing to a module can be summarized to eigengenes, and their
expression can be further analyzed in relation to external in-
formation. Thus, multiple testing problems can be reduced
compared with testing each gene separately to detect
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differential expression (Langfelder and Horvath 2008). Genes
and gene products interact in complex networks. The position
of a gene in a network or the number of interactions to other
genes can affect the evolutionary dynamics of gene expres-
sion (Levy et al. 2008; Feltus 2014; Fischer et al. 2016; Laarits
et al. 2016). For example, the number of protein—protein
interactions and the location of the gene in a network may
constrain or buffer against changes in gene expression (Han
et al. 2004; Levy et al. 2008; Papakostas et al. 2014). Thus,
analysing gene expression changes within and among net-
works can provide further insights into how populations
have adapted to local conditions (Ruprecht et al. 2017).

Understanding the roles of plastic and evolutionary
responses in gene expression may benefit from integrating
methods commonly used for evolutionary and systems biol-
ogy (Soyer and O'Malley 2013; Feltus 2014). Coexpression
analysis might reveal complex interaction networks but are
not informative of the evolutionary forces shaping the net-
work evolution (Soyer and O’'Malley 2013). Traditional Qst-
Fst comparisons might help separate neutral and adaptive
processes in network evolution and provide a global view of
transcriptome divergence. Comparisons of recently diverged
populations may provide further insights into the molecular
mechanisms underlying rapid thermal adaptation in a time
scale comparable to anthropogenic environmental change.
Furthermore, direct comparisons of ancestral-derived popula-
tions are informative of the evolution of plasticity (Schlichting
and Wund 2014). Here, we used European grayling
(Thymallus thymallus) populations inhabiting small mountain
lakes in Norway to investigate early-stage divergence in gene
expression. This model system is suitable for investigating the
early stages of divergence because colonization dates back
25-30 generations (Haugen and Vellestad 2000, 2001). In
addition, knowledge concerning the ancestral population
facilitates comparisons to the derived populations, enabling
the tracking of evolutionary sequences and plastic events
(Schlichting and Wund 2014).

Here, we investigate the relative roles and the evolution of
plastic and evolutionary responses in gene coexpression net-
works during rapid thermal adaptation. We focus on two
working hypothesis. First, under the genetic assimilation sce-
nario, the plastic response to thermal treatment is completely
or almost lost during the course of divergence, and the pop-
ulations show divergent expression profiles, reflecting adap-
tive evolution. Second, under the Baldwin effect scenario,
plasticity is maintained or even elevated relative to the ances-
tral level, but populations may also show divergence in gene
expression. To address the abovementioned questions, we
raised developing embryos from four grayling populations
originating from varying thermal environments and exposed
them to two thermal treatments in a common garden envi-
ronment. To evaluate the above scenarios, we first used a
gene coexpression analysis to identify expression modules of
potentially functionally similar transcripts. We then analyzed

module eigengene expression variation in an ANOVA frame-
work to partition variance to treatment, population and their
interaction effects. ANOVA analysis should reveal the relative
contributions of plastic (treatment) and population (evolution-
ary) effects on module eigengene expression. Treatment and
population interaction should be informative about the ge-
netic variation in plasticity and thus the evolution of plasticity.
If genetic assimilation has occurred, we expect to see loss or
reduction of plasticity in the eigengene expression, and differ-
entiation between the eigengene expression profiles of pop-
ulations due to adaptive evolution. If the Baldwin effect holds
true, plasticity in eigengene expression should be maintained.
Second, we further analyzed the population effect in gene
expression using a broad sense Qst - Fst comparison. This ap-
proach is used to estimate gene expression variation resulting
from neutral and potentially adaptive processes within mod-
ules and at the global level.

Materials and Methods

Sample Collection and Common Garden Experiment

The study system comprises the ancestral river population and
three derived small mountain lake populations located in cen-
tral Norway (fig. 1). The colonization history of these popula-
tions was inferred from historical records (Haugen and
Vollestad 2000, 2001). The initial colonization of the
L. Lesjaskogsvatnet occurred in the 1880s, when a temporary
channel from the R. Gudbrandsdalsldgen was opened.
Therefore, the R. Gudbrandsdalsldagen represents the
ancestral grayling population of the system. From
L. Lesjaskogsvatnet, a few grayling individuals were trans-
ported to high-elevation mountain lakes (L. Harrtjgnn and
L. @vre Merrabotvatnet) in the 1910s. A natural colonization
from L. Harrtjgnn to L. Aursjgen occurred during the 1920s
(Haugen and Vgllestad 2001; fig. 1). Thus, the divergence in
this system has occurred in during the past 25-30 genera-
tions, assuming that the generation time for grayling is ap-
proximately six years (Haugen and Vellestad 2001). The four
study populations can be roughly classified as “warm” or
"cold” origin populations according to the mean temperature
during the grayling spawning season and early development
period in June—August (Haugen 2000, supplementary figs. S1
and S2, Supplementary Material online). In this respect, R.
Gudbrandsdalslagen and L. Harrtjgnn can be described as
“warm” origin populations, whereas L. Lesjaskogsvatnet
and L. Aursjgen can be described as “cold” origin popula-
tions. The mean temperature differences translate to large
temperature sums differences during the period of June—
August (supplementary figs. S1 and S2, Supplementary
Material online).

The sample from R. Gudbrandsdalsldagen was collected
close to the town Otta, representing the ancestral population
of the study system. The Otta location is below a present-day
natural migration barrier to grayling, indicating that this
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Fic. 1.—A map of the Grayling study system showing the colonization
routes (arrows) and timing (numbers along the arrows) as inferred from
the historical records, lake size (km?), and elevation (MASL = meters above
sea level). These lakes differ in their thermal profiles during the grayling
development period and can be roughly classified as cold (blue) and
warm (red) populations.

population has probably been isolated from the other popu-
lations for a large number of generations (Junge et al. 2014).
The L. Lesjaskogsvatnet sample was collected from R. Valae,
which is a small cold tributary in the eastern part of the lake.
The sample from L. Harrtjgnn was collected from a small river
outlet, and the sample from L. Aursjgen was collected from
the main tributary (R. Kvita). Mature male and female fish
were collected from each location during the 2013-spawning
season for a common garden experiment. Eggs and sperm
were extracted from mature fish under anesthesia and sub-
sequently transported on ice to the University of Oslo exper-
imental facility. The experimental crosses were performed
according to Thomassen et al. (2011). Briefly, for each popu-
lation, eggs from four to five females were pooled and fertil-
ized with sperm collected from four to six males. Individual
fertilized eggs were subsequently transferred to standard 24-
well culture plates with temperature-acclimated water added
to the wells. The culture plates were incubated in climate-
controlled rooms and at target temperatures of 6°C and
10°C. This design was thus a reciprocal thermal treatment,
as these temperatures represent the average temperatures
experienced by developing embryos in their natal

environments (cold populations in 6 °C and warm populations
in 10°C). The number of degree days was used as a proxy for
developmental stage to sample embryos from the same de-
velopmental stage (Chezik et al. 2014). Embryos were col-
lected at ~140 degree-days post fertilization, immediately
individually frozen on dry ice in Eppendorf tubes, and subse-
quently stored at —80 °C until further analysis. Altogether 19
embryos from the cold treatment and 16 embryos from the
warm treatment were sampled for the subsequent RNA-
sequencing. The final sample set comprised five cold and
four warm treatment embryos for Gudbrandsdalslagen,
L. Harrtjgnn, and L. Aursjgen and four cold and four warm
treatment embryos for L. Lesjaskogsvatnet.

RNA Extraction

RNA was extracted from whole embryos using TRI reagent
according to the manufacturer’s instructions (Sigma—Aldrich).
Before extraction, the tissue was homogenized using
TissueLyser (Qiagen) for 30s with full speed. The quality and
guantity of the RNA were determined using a BioAnalyzer
instrument (Agilent Technologies), and only samples with
RNA integrity number (RIN) higher than eight were included
in the sequencing. The sequencing libraries were prepared
according to manufacturer’s instructions (lllumina). The se-
guencing was conducted at Beijing Genome Institute (BGI)
using lllumina HiSeq 2000 equipment with 100-bp paired-
end reads. To avoid lane effects, each sequencing library
was distributed among five different lanes, and the reads
were combined for subsequent analyses.

Bioinformatic Analyses

The quality of each sequencing library was investigated using
the FastQC (v. 0.11.2) quality control tool for sequencing data
(Andrews 2010). Analysis of the raw reads indicated the pres-
ence of low-quality bases in the 3’ end of the reads and an
excess of PCR duplicates. ConDeTri read trimmer with default
parameters was used to remove low-quality bases and PCR
duplicates (Smeds and Kinstner 2011). A de novo transcrip-
tome assembly was reconstructed using all nine sequencing
libraries (altogether ca. 610 million reads) from the ancestral
population R. Gudbrandsdalslagen. Before assembly, in silico
normalization was used to restrict the maximum kmer cover-
age to 50x to decrease computational demands by reducing
redundancy in the high-coverage regions. After normaliza-
tion, 66.8 million reads remained for the de novo assembly.
The de novo assembly was performed using the Trinity 2.0.4
assembler (Haas et al. 2013) with default parameters, except
“minimum kmer coverage” was set to 10 and the “minimum
glue” to 10. These parameters were adjusted to reduce the
number of falsely identified transcripts as a result of low cov-
erage, but the sensitivity for identifying lowly expressed tran-
scripts can be lower compared with default parameters. The
resulting transcripts were translated to proteins, and
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candidate-coding regions (or ORFs) were identified using
TransDecoder software (http:/transdecoder.github.io; last
accessed December 30, 2017) with a minimum protein length
of 100 amino acids. Similar protein sequences were merged
using CD-HIT software (Li and Godzik 2006; Fu et al. 2012)
with the sequence identity threshold set to one. The
TransDecoder translated proteins (i.e., containing in silico pre-
dicted ORFs) were annotated using reciprocal protein—protein
BLAST search using P-value cut-off 107> as implemented in
BLAST+ software (Camacho et al. 2009). The BLAST searches
were conducted against zebrafish (Danio rerio), stickleback
(Gasterosteus aculeatus), cod (Gadus morhua), and Atlantic
salmon (Salmo salar) protein databases. A local database for
each species was constructed using protein annotations avail-
able in the Ensembl protein database (Cunningham et al. 2015)
for zebrafish, stickleback and cod, and from GenBank (Benson
et al. 2012) for Atlantic salmon. A transcript was considered
reliably annotated when a significant reciprocal BLAST hit to
one of the annotated proteins in any of the species was
obtained. To compile a gene expression estimate or count table
foreach transcript, the quality filtered reads were mapped back
to the de novo assembly. The mapping back was performed
using Bowtie2 alignment software (Langmead and Salzberg
2012) with parameters -a -X 600 -rdg 6, 5 -rfg 6, 5 -score-
min L, -0.6, -0.4 -no-discordant, -no-mixed. These parameters
avoid mappings to splice variants and restrict the output to only
read pairs mapped concordantly according to the eXpress soft-
ware manual (http:/bio.math.berkeley.edu/eXpress/faq.html;
last accessed December 30, 2017). Transcript abundances, that
is, read counts per transcript, were estimated from the align-
ments using the default parameters in eXpress (Roberts and
Pachter 2013). Rounded effective counts were used for the
gene expression analyses as suggested in the eXpress manual.
Effective counts are the expected number of reads generated
from a given target (transcript), considering target length and
the number of reads generated in the sequencing experiment
(Roberts and Pachter 2013).

The Bowtie2 alignments described above were used for the
identification of single nucleotide polymorphisms (SNPs). The
mpileup command in SAMtools 1.4 package (Li et al. 2009)
was used with a minimum mapping quality of 20 to combine
mapping positions into a single file. SNPs and genotypes were
called from the resulting pile up file using BCFtools and
options —bcvg. The SNPs within 20 bp of indels and exceeding
2,000x coverage were removed. Genotypes were filtered us-
ing minimum overall genotype quality 999, minimum overall
genotype coverage 50, minimum individual genotype cover-
age 10, minimum number of samples of valid genotypes 35
(i.e., no missing data allowed), and overall minor allele fre-
quency 5%. Loci deviating from Hardy—\Weinberg equilibrium
(both heterozygote excess and deficiency) at P-level 0.05 were
removed. Finally, only one SNP per transcript was subjected to
further analyses. Genetic differentiation was estimated using
the Weir and Cockerham (1984) estimator of Fs as

implemented in the R package adegenet (Jombart and
Ahmed 2011). A Bayesian approach was used to detect loci
potentially under natural selection (Foll and Gaggiotti 2008).
This method dissects Fst into population and locus effects
using a generalized linear model and assuming multinomial-
Dirichlet probability distribution. Posterior distributions of lo-
cus effects can be indicative of either balancing or directional
selection (Foll and Gaggiotti 2008).

Gene Expression Analyses

Potential unwanted variation in the count data arising from
library preparation or other technical factors were investigated
using principal component analysis. The R stats function
prcomp in R statistical programming environment was used
for PCA analysis. Three clusters were identified by the first two
axes, which explained 42.3% (PC1) and 14.1% (PC2) of the
total variation and were not linked to the experimental setup,
indicating the presence of possible unwanted variation
(fig. 2). Although care was taken to control batch effects by
randomizing RNA-extraction dates and distributing sequenc-
ing libraries to several sequencing lanes, some unwanted var-
iation remained due to unknown reasons. To remove the
unwanted variation in the data, residuals from a general linear
model on nonnormalized counts were used, and population
and treatment were used as covariates (Risso et al. 2014).
Briefly, this method should work for data without control
genes, assuming that the covariates of interest are not corre-
lated with unwanted variation (Risso et al. 2014). We used
function RUVI, as implemented in the R package RUVSeq, to
remove such effects (Risso et al. 2014). After removal of the
unwanted variation, the samples were grouped according to
population and treatment, and the PC1 and PC2 explained
25.9% and 17.3% of the total variation, respectively (fig. 3).

A weighted gene coexpression analysis (WGCNA) was
used to identify clusters of similarly expressed genes or mod-
ules using R package WGCNA (Langfelder and Horvath
2008). In this approach, similar gene coexpression patterns
are identified based on expression correlation, which can sub-
sequently be used to group transcripts into modules using
hierarchical clustering (Langfelder and Horvath 2008). Gene
expression variation within a module can be summarized to
eigengenes using PCA, and variation in eigengenes can be
linked to external information of interest (Langfelder and
Horvath 2007, 2008). First outliers potentially interfering
with network construction were detected using hierarchical
clustering analysis with Euclidean distance to describe sample
relationships. A sample from R. Gudbrandsdalsldagen warm
treatment was excluded due to a large distance from the
other samples. A coexpression similarity matrix was calculated
using signed (i.e., keeping the sign of coexpression) expres-
sion measures. The similarity matrix was transformed to adja-
cency matrix by raising the similarity between genes by to soft
thresholding power of 13. This soft thresholding power was
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determined from the data, using a cut-off value of 0.9. In
other words, genes were considered coexpressed if the cor-
relation coefficient exceeded 0.9 within a module. The other
parameters used for the network construction were minimum
module size 50 transcripts, deep split 2, and merge cut height
0.3. The stability of the modules was examined with 100
bootstrap replicates to assess the overlap of the module labels
between nonsampled and resampled data sets. The overlap
was estimated using Fisher's exact test based on the module
assignments. If the proportion of resampled data sets had
significant overlap (P< 0.01) >70%, then the module was
considered statistically robust. The expression profile in each
module was summarized to eigengene expression using the
first principal component (PC1). The variation in eigengenes
was analyzed using ANOVA with population and treatment
and their interaction as explanatory variables. The rationale for
the ANOVA analyses is to detect plastic (treatment) and (pop-
ulation) responses. The ANOVA analyses were performed us-
ing the R stats function aov.

To estimate adaptive gene expression divergence, broad
sense Qst (i.e., the additive genetic variance component is
unknown) was estimated across the four study populations
for all transcripts. In experimental settings where heritability or
additive genetic variance cannot be estimated, Qst can be
approximated assuming ratios of c/h?, where ¢ represents
the assumed proportion of total variance due to additive ge-
netic effects among populations, and h? represents heritability
(Brommer 2011). Three ¢/h? ratios were assumed: 0.5, 1, and
1.5. The null assumption ¢/h? =1 assumes that the additive
phenotypic variance between and within populations is the
same, but this ratio can be smaller (0.5) or larger (1.5), reflect-
ing, for example, environmental effects (Brommer 2011).
More specifically, assuming a range of biologically meaningful
ratios (0-2 suggested by Brommer 2011) one can compare
the distribution of Qsr when environmental or nonadditive
variance components are contributing to trait divergence (¢/
h* < 1) to a situation where additive variance mostly explain
trait divergence (dh?>1). Transcriptome derived SNPs were
used to estimate Fs to obtain a neutral baseline to which Qst
can be compared. The rationale for the Qst - Fst comparisons
is to identify candidate transcripts under stabilizing or diver-
gent selection (Leinonen et al. 2013). If a given transcript
shows lower or higher differentiation compared with the Fsy
distribution, then stabilizing and divergent selection can be
inferred, respectively (Leinonen et al. 2013). Qst was calcu-
lated according to the formula (c/h?)a%/((c/h?)a + 207,),
where ¢/h? is the assumed ratio of additive variance and
heritability, ¢ is the variance between populations in tran-
script expression and 27, is the variance within population in
transcript expression (Brommer 2011). The within and be-
tween population variance components in transcript expres-
sion were estimated fitting a mixed effect model using
thermal treatment as a fixed effect and population as a ran-
dom effect. The mixed effect model was fitted using /me

function in R package Ime4 (Bates et al. 2015). The confi-
dence intervals of each Qs estimate were estimated with
250 bootstrap replicates. The Qsr estimates were compared
with the entire distribution range of locus specific Fst (proxy
for the neutral distribution) according to Whitlock (2008) after
excluding those loci under directional and balancing selection.
Transcripts showing a higher divergence (Qst> Fsy) than
expected by genetic drift alone are potentially under direc-
tional selection whereas transcripts showing lower divergence
(Qst < Fs1) are under balancing selection. Neutrally evolving
transcripts are expected to fall within the Fsp distribution
(Leinonen et al. 2013). The 95% confidence intervals of the
Qst estimates were considered in the above comparisons. If
the upper or lower confidence interval did not overlap with
the lower or upper tail of the Fst distribution, then the given
transcript was considered affected by stabilizing or divergent
selection, respectively.

Gene Ontology Enrichment Analyses

Gene enrichment analyses were performed using zebrafish
gene annotations for each statistically robust module identi-
fied in the WGCNA analysis. The STRING database was used
to identify significant (FDR < 0.05) Gene Ontology (GO) cat-
egories for biological processes and PFAM protein domains
and features (Szklarczyk et al. 2015). The GO categories were
summarized using SimRel semantic similarity measure to avoid
interpretation of redundant categories. The merging of se-
mantically similar GO categories was based on hierarchical
clustering with a user-specified cutoff value C. A cutoff value
0.5 was used to merge similar categories, corresponding to
1% chance of merging two randomly generated categories
(Supek et al. 2011). The P-values of the initial enrichment
analyses were used to select a representative GO term for
each merged category. Thus, the lowest P-value among the
merged categories was selected as the representative GO
term. The REVIGO web-server tool was used for semantic
similarity analyses (Supek et al. 2011).

Results

On average, 78.7 million paired-end reads were obtained per
sequencing library. After quality filtering and removing PCR
duplicates, 68.1 million reads remained (86.5%;
supplementary table S1, Supplementary Material online).
The average GC content of the quality-filtered libraries was
46%. De novo assembly with Trinity identified 142,653 tran-
scripts (including isoforms) and 109,102 trinity “genes.” The
total length of the de novo assembly was 143.923 Mb, and
the mean and median contig lengths were 583bp and
1,009 bp, respectively. In silico prediction of the putative cod-
ing sequence with TransDecoder identified 136,291 tran-
scripts with open reading frames. Clustering of highly
similar sequences with CD-hit identified 61,190 unique
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proteins. The annotation of the unique proteins with recipro-
cal BLAST search identified 19,461 putative homologies to at
least one of the reference species (zebrafish, stickleback, cod
or Atlantic salmon). In total, 131 putative paralogous genes,
that is, the same transcript showed reciprocal BLAST hits to
different gene models, were removed from the downstream
analyses. Specifically, 6,069 (31.2%), 3,830 (19.7%), 4,302
(22.1%), and 5,260 (27.0%) transcripts had one, two, three,
or four BLASTP hits, respectively. Therefore, the majority
of the transcripts (13,392, 68.8%) had more than one
reciprocal BLAST hit in reference species. Approximately
27.3 (40.1%) million reads were mapped back concordantly
to the de novo assembly with Bowtie2 (supplementary
table S1, Supplementary Material online). Altogether count
data were obtained from 19,330 annotated transcripts.
However, the final data set comprised 16,622 annotated tran-
scripts after the removal of transcripts containing at least one
individual with zero counts. This filtering step was applied to
remove transcripts showing uninformative signals and to
avoid frequent crashes in the WGCNA resampling analysis.

Principal component analysis showed differentiation both
between treatments and populations (fig. 3). PC1 explained
25.9% and PC2 explained 17.3% of the total variation in
gene expression. There was clear differentiation between
populations in cold and warm treatments for R.
Gudbrandsdalslagen, L. Lesjaskogsvatnet, and L. Aursjgen.
However, L. Harrtjgnn in the cold treatment overlapped other
populations in the warm treatment (fig. 1). Analysis of vari-
ance using PC1 as a dependent variable revealed significant
population [A3, 27)=26.82, P<0.001], treatment [A1,
27)=208.12, P<0.001], and their interaction effects [F(3,
27)=11.25, P< 0.001]. Post hoc (Tukey HSD) tests indicated
that three out of six pairwise population comparisons in the
cold treatment were significant (adjusted P-value < 0.05),
whereas in the warm treatment, two comparisons were sig-
nificant (supplementary fig. S3, Supplementary Material on-
line). When different populations were compared between
the treatments only two out of sixteen comparisons were
nonsignificant  (supplementary fig. S3, Supplementary
Material online).

The WGCNA identified ten modules, and six modules
(assigned to black, blue, brown, green, red, and turquoise
colors by the WGCNA analysis) were robust in the resampling
analysis, that is, showing significant overlap in 70% of the
resampled data sets with the original data set (fig. 4). The six
statistically robust modules contained a total of 5,999
(36.1%) transcripts. Black, blue, brown, green, red, and tur-
guoise modules contained 223, 1,499, 1,133, 740, 302, and
2,102 transcripts, respectively. The majority of the transcripts
(9,496, 57.1%) was not assigned to any particular module
(grey module) and the remaining modules (magenta, pink
and yellow) showed instability in the resampling analysis
(fig. 4). PC1 on the transcripts belonging to the statistically
robust modules explained 96.5% of the total variation,

whereas the PC2 explained 1.4% of the total variation
(fig. 5). Module eigengenes (PC1) showed variable responses
to population, treatment and their interaction effects (table 1,
fig. 6). Blue and turquoise modules had significant (P< 0.001)
population, treatment and their interaction effects, whereas
black and green modules showed only significant treatment
effects (table 1, fig. 6). The other modules (red and brown)
showed nonsignificant population, treatment or their interac-
tion effects (table 1, fig. 6).

The mean and range of Qs across all transcripts were
0.024 (0-0.570), 0.044 (0-0.726), and 0.062 (0-0.799) as-
suming 0.5, 1, and 1.5 for the o/h? scalar variable, respectively
(supplementary fig. S4, Supplementary Material online). A to-
tal of 13,121 transcripts were significant, that is, the confi-
dence intervals excluded zero. The mean F<r across 2,458 SNP
loci was 0.128 and the range of locus specific Fst values was
0-0.531 (supplementary fig. S4, Supplementary Material on-
line). There were no differences in the mean Fst in SNPs lo-
cated in the flanking regions (Fsy=0.129, n=1,955), and
nonsynonymous positions (Fst=0.129, n=256) or synony-
mous positions (Fs;=0.116, n=247). SNP data separated
populations in PC1 (16.4% variation) and PC2 (11.8% varia-
tion), whereby the ancestral population was the most distant
from the other populations (supplementary fig. S5,
Supplementary Material online). None of the loci showed
indications of natural selection (supplementary fig. S10,
Supplementary Material online). The Qsr estimates of two
transcripts [TR19626: 0.799 (95% C.I. 0.712-0.871) and
TR47182: 0.709 (95% C.I. 0.576-0.813)] fell outside the up-
per range of the Fr distribution when ¢/h?=1.5, and one
transcript [TR19626: 0.726 (95% C.I. 0.622-0.819)] fell out-
side the upper range of the Fsr distribution when c/h® = 1.0
(supplementary fig. S4, Supplementary Material online). No
Qst estimates were detected outside the lower range of the
Fst distribution (supplementary fig. S4, Supplementary
Material online). Thus, almost the entire range of Qst esti-
mates fell within the Fsy distribution, indicating that the tran-
scriptome divergence can be explained by patterns consistent
with neutral evolution. The mean Qsr differed between mod-
ules. Black (0.037), brown (0.020), green (0.041), and red
(0.016) modules showed relatively small differentiation,
whereas blue (0.123) and turquoise (0.137) modules showed
a higher degree of differentiation on average assuming
h*=1.0 (fig. 7). A bootstrap sampling from the whole Qsr
distribution was conducted using the same number of tran-
scripts as in each module to compare the observed mean to
the resampled means. The observed means of each module
were significantly different from the randomized means.

Altogether 126 (56.5%), 1,060 (70.7%), 665 (58.7%),
440 (59.5%), 165 (54.6%), and 1,275 (60.7%) zebrafish
annotations were recovered for the grayling transcripts be-
longing to the black, blue, brown, green, red, and turquoise
modules, respectively, which were used for enrichment anal-
ysis using the STRING database. Gene enrichment analysis
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revealed significant (FDR < 0.05) 33 (black module), 134 (blue
module), 112 (green module), and 18 (turquoise module) GO
terms associated with biological processes. After merging se-
mantically similar categories, 15, 55, 33, and 7 categories

Table 1
ANOVA Results on the Module Eigengene Expression Variation as a Result
of Population, Treatment, and Their Interaction Effects

Module Population Treatment Interaction
(13, 27%) 1,27) (3,27)
Black 13.2° (2.076°) 27.7 (13.036)*** 1.6 (0.249)
Blue 21.0 (25.932)***  57.4 (212.624)***  14.4 (17.763)***
Brown 1.8 (0.19) 0.3 (0.108) 14.5 (1.569)
Green 9.6 (1.615) 35.7 (18.097)*** 1.4 (0.228)
Red 0.1 (0.015) 1.2 (0.358) 11.6 (1.202)
Turquoise 23.6 (55.219)***  54.6 (383.606)***  18.0 (42.22)***

?Degrees of freedom.

bPercentage of variance explained.

°F ratio.
***P.<0.001.

remained for black (supplementary fig. S6, Supplementary
Material  online),  blue  (supplementary  fig. S7,
Supplementary Material online), green (supplementary fig.
S8, Supplementary Material online), and turquoise (supple-
mentary fig. S9, Supplementary Material online) modules, re-
spectively. No significant enrichments for the biological
processes were observed for the red and brown modules.
Most of the categories belonged to general terms, such as
“biological regulation” and “cellular process,” both of which
were identified in all modules, except the turquoise module.
Other categories were involved in biological functions
“response to stress,” “response to stimulus” (green module),
and “methylation” (blue module). There were also several
more specific terms associated with developmental processes.
The black module contained “muscle fiber development,”
the green module “nervous system development,” and the
turquoise module “embryonic organ development” terms.
Altogether six (blue module), two (brown module), two
(green module), one (red module), and five (turquoise
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Fic. 7.—Boxplots depicting the variance of Qsr for each of the transcripts in each module, assuming a scaling factor /h? = 1.0. The distribution of Fsy for

2,458 SNP loci is shown for comparison.

module) significant (FDR < 0.05) Pfam protein domain enrich-
ments  were identified (supplementary  table  S2,
Supplementary Material online).

Discussion

The Evolution Plastic Response during Early Divergence

One of the major findings of the present study is that pop-
ulations respond differently to the thermal treatment at both
the whole transcriptome level and within the transcriptional
modules. This finding opens up possibilities for disentangling
the causes of variable responses in the context of how plas-
ticity itself evolves and how it interacts with evolutionary
responses. Studies have suggested that the initial response
to new environmental conditions is produced through plas-
ticity, but if there is genetic variation in the same direction,
then the response can become genetically determined.
During this process, the environmental sensitivity or plasticity

can be lost or reduced, a phenomenon known as genetic
assimilation or accommodation (Pigliucci et al. 2006; Crispo
2007; Schlichting and Wund 2014; Ehrenreich and Pfennig
2016; Schneider and Meyer 2017). However, plasticity can be
maintained or increased relative to ancestral plasticity levels, a
phenomenon known as the Baldwin effect (Crispo 2007). It is
expected that the Baldwin effect is favored when plasticity is
not costly and is beneficial. Genetic assimilation, however, is
expected to evolve under conditions in which constitutive ex-
pression is favored. The costs of plasticity and maladaptive
responses are expected to favor genetic assimilation (Crispo
2007). If the genetic assimilation scenario would hold in this
study system, then we would expect a loss or reduced plas-
ticity and increased population effects during the colonization
of different habitats. We expect that population and treat-
ment interaction in eigengene expression is informative about
the evolution of plasticity (Aubin-Horth and Renn 2009). We
observed significant interaction terms in blue and turquoise
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modules indicating that plasticity can evolve in this system and
thus plasticity itself might be under selection. Also the blue
and turquoise modules showed significant population and
treatment effects and these effects explained a large propor-
tion of the total variance. Thus, selection may favor reduced
plasticity (genetic assimilation) in the warm origin populations
and large plasticity (Baldwin effect) in the cold origin popula-
tions in the blue and turquoise modules. A Simulation study
has shown that genetic assimilation is a slow process (Lande
2015) and complete assimilation potentially takes longer to
evolve than the divergence time between the study popula-
tions (25-30 generations). Experimental studies have shown
that genetic assimilation in thermal stress can rapidly evolve
(ten generations) in laboratory populations of nematodes
(Sikkink et al. 2014). In bacterial populations, genetic assimi-
lation to high CO, levels evolved after 4.5years (570-850
generations) of experimental evolution (Walworth et al.
2016). The results from experimental evolution studies in
other species cannot be directly translated to natural popula-
tions, but these studies show evidence that genetic assimila-
tion can evolve rapidly. Although there is potential for rapid
evolution of genetic assimilation, the response at the gene
expression level can be complicated. Sikkink et al. (2014)
showed that there were no correlated responses in gene ex-
pression to the evolved changes in thermal stress at the phe-
notypic level. This finding may further complicate detecting
genetic assimilation at the molecular level.

Heterogeneous environments can favor plasticity because
multiple optima are needed during the life-time of an organ-
ism (Crispo 2007; Murren et al. 2015; Hendry 2016), poten-
tially explaining the variable plastic response observed in the
grayling populations. We observed the lowest plastic response
in the smallest lake (L. Harrtjgnn) with few river outlets. In
contrast, we observed the large plastic responses in larger
lakes with many small tributaries. For example, in L.
Lesjaskogsvatnet, the grayling spawns in numerous “large
cold” and “small warm” rivers, which differ in their thermal
profiles (Haugen 2000; Haugen and Vgllestad 2001;
Gregersen et al. 2008; Kavanagh et al. 2010). The embryos
hatch, and the larvae drift or migrate from the spawning
tributary into the lake during summer and early autumn.
Grayling in L. Lesjaskogsvatnet may thus experience a wide
thermal range during its lifetime, favoring larger plasticity.
Similar patterns may arise if plasticity is costly in one environ-
ment but not in the other. Costs may arise as a result of
energetic costs of maintaining genetic machinery for produc-
ing a plastic response, developmental instability, and genetic
costs if the plasticity is associated with a disadvantageous
gene (DeWitt et al. 1998; Crispo 2007). Studies investigating
plasticity costs have reported variable outcomes, but overall
the results suggest that the costs are small or absent (Snell-
Rood et al. 2010; Murren et al. 2015). Evaluating the costs of
plasticity in grayling populations in the present study would be
difficult, but the relation of enrichments to growth and

developmental traits might indicate that plasticity costs could
indeed exist. Kavanagh et al. (2010) demonstrated that cold
populations had a faster developmental rate and higher mus-
cle mass than warm populations but at the cost of decreased
development of skeletal structures. This finding may suggest
that there are energetic costs associated with expressing dif-
ferent developmental rates, but further studies are needed to
evaluate whether such costs exist at the transcriptome level.
Finally, plasticity can also be maladaptive and thus select
against or compensate for faster evolutionary rate, a phenom-
enon known as counter gradient variation (Conover and
Schultz 1995; Ghalambor et al. 2007, 2015).

Modular Gene Expression Response

The basic assumption underlying gene coexpression analyses
is that functionally similar genes are likely coexpressed or their
expression is correlated (Langfelder and Horvath 2008). We
found evidence for the above assumption in the grayling tran-
scriptome response to thermal treatments. We observed sev-
eral enrichments for developmental traits among the
modules, indicating that this approach can capture gene ex-
pression patterns underlying ecologically important traits.
Previous studies have shown that graylings from cold-origin
populations grow faster and have higher muscle mass than
the warm origin populations (Kavanagh et al. 2010). We
found muscle development related enrichments in the black
module, which could be linked to the observed differentiation
in the muscle growth patterns between cold and warm envi-
ronments. In addition, we found several embryonic organ
development enrichments in the turquoise module and they
could be associated with several other early developmental
traits that have differentiated in grayling populations (Haugen
2000; Haugen and Vagllestad 2000, 2001; Koskinen et al.
2002). Similar results have been observed in lake whitefish
(Coregonus clupeaformis), for which key phenotypic traits of
adaptive significance were associated with coexpression mod-
ules (Filteau et al. 2013). Filteau et al. (2013) correlated phe-
notypic measurements to module eigengene expression,
facilitating the direct association of ecologically important
traits with gene expression patterns. We used a “top-down”
approach, which can also enable the association of gene ex-
pression modules with previously identified adaptive traits in
the grayling populations. In addition to enrichments associ-
ated with biological processes, we observed Pfam protein do-
main enrichment for Homeobox domain in the red module.
The Hox gene cluster is a known transcription factor regulat-
ing embryonic development in the anterior posterior axis (e.g.,
Cheatle Jarvela and Hinman 2015). Originally discovered in
Drosophila, Hox genes have been observed to control devel-
opmental processes in a wide variety of organisms (Pearson
et al. 2005; Cheatle Jarvela and Hinman 2015). Recently, the
Hox gene cluster was identified as a potential driver of diver-
sification in coral reef fishes (Puebla et al. 2014). Hox genes
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control downstream genes through the upregulation or
downregulation of gene expression and thus play an impor-
tant role in regulating gene regulatory networks. However,
additional studies are needed to elucidate the molecular
mechanisms of how Hox genes control plastic or evolutionary
responses in gene expression.

The modular pattern of gene expression suggests a flexible
model of plastic and evolutionary responses during the early
stages of thermal adaptation. Thus, the gene coexpression
modules had variable responses to thermal treatment, popu-
lation effect or their interaction or no effect at all. In general,
plastic effects explained larger proportion of the eigengene
expression than population effects. Overall, these results sug-
gest that transcriptome is divided into subunits with separate
biological functions and different evolutionary properties or
gene expression responses. Although modularity is a charac-
teristic of most living organisms at both the phenotypic and
molecular levels (West-Eberhard 2003), there is no consensus
on the origin and maintenance of modularity (Espinosa-Soto
et al. 2010). Several scenarios have been proposed based on
computer simulations and empirical findings to explain how
modularity evolves (Wagner 1996; Wagner et al. 2007,
Espinosa-Soto et al. 2010). In general, modularity is expected
to decrease pleiotropic interactions among the modules,
thereby enabling more independent evolution of separate
traits (Wagner et al. 2007; Snell-Rood et al. 2010). During
adaptive evolution, most of the traits are under stabilizing
selection, whereas a few traits are under directional selection
(Wagner and Altenberg 1996; Espinosa-Soto et al. 2010).
There is little evidence for the selection scenario in the present
study, although we found that the mean differentiation (Qsy)
within the modules were significantly different from random
patterns. Most likely, the modules evolve at different rates but
the process is inseparable from the neutral expectations. For
example, the black module was enriched for muscle develop-
ment genes, whereas the blue module was enriched for ner-
vous system development genes, but both modules evolved
under neutrality. Kavanagh et al. (2010) observed that the
development of the musculoskeletal traits in grayling involved
trade-offs. Faster muscle growth in the cold treatment likely
constrains development of other traits, suggesting that ge-
netic correlations might constrain the independent evolution
of developmental modules. According to modularly varying
evolutionary goals scenario, the modularly variable environ-
ment may trigger modular evolution. This idea has been dem-
onstrated with computer simulations and in experimental
studies (Parter et al. 2007; Espinosa-Soto et al. 2010). Parter
et al. (2007) showed that bacterial populations living in vari-
able environments showed more modular organization of
metabolic networks than populations in stable environments.
This scenario is appealing for examination in the grayling sys-
tem to reveal habitat-specific modular patterns, but our
attempts to construct robust population-specific gene
coexpression modules resulted in low reproducibility of the

modules. Espinosa-Soto et al. (2010) used computer simula-
tions to show that modularity could arise as a by-product of
selection favoring new gene activity patterns in certain organ-
ismal structures or under novel environmental conditions.
Empirical findings support this scenario because most of the
new evolutionary innovations are built on previously evolved
modules (Espinosa-Soto et al. 2010). Demonstrating whether
new gene activity patterns are underlying modular transcrip-
tome evolution would require comparative data from several
species (Espinosa-Soto et al. 2010). Finally, computer simula-
tions indicate that maximizing network performance and min-
imizing connections costs can facilitate network modularity
(Clune et al. 2013). In conclusion, the mechanism driving
the origin and maintenance of the modularity in the present
study cannot be inferred with certainty. However, we suggest
that modularity may facilitate the flexible adjustment of gene
expression levels to local thermal conditions as indicated by
module-specific plastic and evolutionary responses.

No Evidence for Adaptive Evolution in Gene Expression?

We detected no clear signals of adaptive evolution, suggest-
ing that neutral patterns can explain gene expression variance
after a recent colonization of varying thermal environments.
We found only two transcripts outside the Fst distribution
(assuming dh*=15or 1), and the remaining Qst estimates
fell within the Fst distribution. These two transcripts were
annotated to genes SSUH2 and tctex1d1. SSHUZ is involved
in human dental malformations (Xiong et al. 2017), and
tctex1d1 is associated with relative testis weight and is located
in a genomic region of high sequence differentiation between
house mouse (Mus musculus) subspecies (Phifer-Rixey et al.
2014). The overall pattern of gene expression divergence is
consistent with neutral theory of evolution, predicting that
genetic drift is expected to dominate over natural selection
in small populations (Nei et al. 2010). Previous gene expres-
sion evolution studies have suggested that stabilizing selection
and neutral evolution explains gene expression divergence
between closely related species (Rifkin et al. 2003). For exam-
ple, using a quantitative genetic model, Lemos et al. (2005)
showed that 61-100% of the expressed genes in Drosophila
species and mouse strains were under stabilizing selection,
but little expression variance was explained by genetic drift
or directional selection. Khaitovich et al. (2004) examined pri-
mate gene expression, showing that expression differences
accumulated linearly with time, consistent with neutral
expectations. Previous studies using Qst-Fst comparisons
have provided evidence for natural selection in gene expres-
sion data, but the majority of the gene expression divergence
is consistent with neutral evolution (Roberge et al. 2007,
Kohn et al. 2008; Aykanat et al. 2011; Papakostas et al.
2014; Leder et al. 2015). However, direct comparisons of
Qst - Fst studies are not without problems (Leinonen et al.
2008, 2013). Previous studies have compared the mean and
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95% confidence intervals of Fst estimated from a few micro-
satellite markers to the Qsy distribution, but this approach
might be biased because the genome wide variance of Fsr
could be underestimated (Whitlock 2008; Leinonen et al.
2013). Whitlock (2008) simulated Fst and Qst distributions
and observed that Qst and single locus Fst distributions be-
have similarly under the Lewontin—Kraukauer model, suggest-
ing that the entire distribution range of locus-specific Fst
estimates more realistically describes the neutral distribution.
We used more than two thousand SNP markers, resulting in a
more genome-wide perspective on variance of Fst. However,
in our study, both estimators may suffer from sampling bias,
reflecting small sample size and a low number of populations
(O'Hara and Merila 2005; Whitlock 2008), potentially result-
ing in a large sampling variance of both estimators.
Theoretical studies have shown that a large number of sam-
ples and populations are needed to accurately estimate Qst
and Fst (O'Hara and Merila 2005; Whitlock 2008).
Furthermore, the heritability of gene expression considerably
varies from gene to gene (Leder et al. 2015). The common
garden design did not allow the estimation of heritability, but
the assumed ratios of additive variance and heritability indi-
cated that Qst- Fst overlapped in a wide parameter range.
Similarly, direct comparisons of transcriptome divergence
to previous studies demonstrating adaptive evolution in early-
life history traits at the phenotypic level in grayling populations
are slightly challenging. Koskinen et al. (2002) and Kavanagh
et al. (2010) reported higher divergence than would be
expected under neutrality in early life history traits, such as
muscle growth, although in a different set of populations
from the same region. Neutral divergence in gene expression
was evident when the divergence in transcripts with homology
to zebrafish muscle proteins and embryonic organ develop-
ment were considered. The mean Qsr was 0.041 for eleven
muscle growth-related transcripts and 0.146 for embryonic or-
gan development-related transcripts, indicating divergence
consistent with neutrality. In addition to the statistical difficul-
ties in estimating adaptive evolution in gene expression, further
complications in estimating and interpreting gene expression
divergence compared with the phenotypic level might arise
from the complexity of the molecular mechanisms underlying
genotype—phenotype maps (Diz et al. 2012; Harrison et al.
2012; Alvarez et al. 2015). First, gene expression variability is
inherently noisy because of environmental effects or effects
arising from the maternal or paternal environment. Common
garden experiments should in theory remove environmental
effects, but trans generational plasticity (TGP) may bias estimat-
ing evolutionary responses in gene expression, even in the com-
mon environment (Salinas and Munch 2012; Shama et al.
2016). For example, Shama et al. (2016) showed that gene
expression patterns in sticklebacks (G. aculeatus) follow the
environment experienced by the maternal environment, and
these effects can persist for several generations. Salinas and
Munch (2012) demonstrated that the parental rearing

temperature modified the growth reaction norms in sheep
shead minnow offspring (Cyprinodon variegatus). Therefore,
TGP could bias heritability estimates and lead to false conclu-
sions about the rate of rapid adaptive evolution (Salinas and
Munch 2012). Second, there is uncertainty about the gene
expression variance that is functionally important or having a
phenotypic effect, particularly when only quantitative data are
available, as in many RNA-seq studies (Harrison et al. 2012). In
Qst-Fst comparisons, the extreme values in the tails of the
distribution are most likely candidates affected by natural se-
lection, but variation falling within the neutral distribution
might also have adaptive significance. Documented gene ex-
pression changes underlying adaptive traits can be relatively
small, as in human hair color variation (Guenther et al. 2014),
or can involve almost complete tissue-specific silencing of ex-
pression, as in the pelvic spine loss in sticklebacks (Chan et al.
2010). Therefore, the Qst- Fst approach to analysing gene ex-
pression data to identify extreme values might not always be
completely warranted. Finally, gene expression patterns de-
pend on the topological features of a given network and the
position of a gene in the network (Siegal et al. 2007; Levy et al.
2008). The network can buffer against the expression changes
of individual genes to a certain degree, but highly connected
genes or internal hub genes can be more vital to the entire
network function and output (Han et al. 2004; Levy et al. 2008;
Garfield et al. 2013). For example, the knockout of hub genes
can be almost lethal in yeast (Han et al. 2004), and the number
of protein interactions can constrain expression patterns.
Therefore, estimating gene expression divergence should also
consider the position of a gene in a network and the number of
interactions with neighboring genes.

Conclusions

Our study revealed that each gene coexpression module var-
ied in plastic and population responses. Overall, plastic
responses explained a larger amount of the eigengene expres-
sion variance, suggesting that plasticity might be a key mech-
anism in adaptation to the local thermal conditions among
these grayling populations. Plasticity showed population-
specific responses, suggesting that plasticity might evolve
according to patterns consistent both with the Baldwin and
genetic assimilation effects. Although populations showed
signals of differentiation in expression profiles, no clear signals
of adaptive evolution in gene expression were observed. The
population differences were explained by patterns consistent
with genetic drift, but sampling variance in both Fst and Qst
estimators because of low sample sizes might lead to low
power of detecting selection. The modular organization of
the gene expression patterns might enable module-specific
tuning of gene expression to local thermal conditions.
Overall, we suggest that combining systems and quantitative
genetics methods can help in understanding the evolution of
complex gene expression networks.
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