66 research outputs found

    Characteristic Lie rings, finitely-generated modules and integrability conditions for 2+1 dimensional lattices

    Full text link
    Characteristic Lie rings for Toda type 2+1 dimensional lattices are defined. Some properties of these rings are studied. Infinite sequence of special kind modules are introduced. It is proved that for known integrable lattices these modules are finitely generated. Classification algorithm based on this observation is briefly discussed.Comment: 11 page

    Numerical solution and spectrum of boundary-domain integral equation for the Neumann BVP with variable coefficient

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 Taylor & Francis.In this paper, a numerical implementation of a direct united boundary-domain integral equation (BDIE) related to the Neumann boundary value problem for a scalar elliptic partial differential equation with a variable coefficient is discussed. The BDIE is reduced to a uniquely solvable one by adding an appropriate perturbation operator. The mesh-based discretization of the BDIEs with quadrilateral domain elements leads to a system of linear algebraic equations (discretized BDIE). Then, the system is solved by LU decomposition and Neumann iterations. Convergence of the iterative method is discussed in relation to the distribution of eigenvalues of the corresponding discrete operators calculated numerically.The work was supported by the grant EP/H020497/1 "Mathematical analysis of localised boundary-domain integral equations for BVPs with variable coefficients" of the EPSRC, UK

    A method to construct refracting profiles

    Full text link
    We propose an original method for determining suitable refracting profiles between two media to solve two related problems: to produce a given wave front from a single point source after refraction at the refracting profile, and to focus a given wave front in a fixed point. These profiles are obtained as envelopes of specific families of Cartesian ovals. We study the singularities of these profiles and give a method to construct them from the data of the associated caustic.Comment: 12 pages, 5 figure

    On Darboux Integrable Semi-Discrete Chains

    Get PDF
    Differential-difference equation ddxt(n+1,x)=f(x,t(n,x),t(n+1,x),ddxt(n,x))\frac{d}{dx}t(n+1,x)=f(x,t(n,x),t(n+1,x),\frac{d}{dx}t(n,x)) with unknown t(n,x)t(n,x) depending on continuous and discrete variables xx and nn is studied. We call an equation of such kind Darboux integrable, if there exist two functions (called integrals) FF and II of a finite number of dynamical variables such that DxF=0D_xF=0 and DI=IDI=I, where DxD_x is the operator of total differentiation with respect to xx, and DD is the shift operator: Dp(n)=p(n+1)Dp(n)=p(n+1). It is proved that the integrals can be brought to some canonical form. A method of construction of an explicit formula for general solution to Darboux integrable chains is discussed and for a class of chains such solutions are found.Comment: 19 page

    Differential constraints and exact solutions of nonlinear diffusion equations

    Full text link
    The differential constraints are applied to obtain explicit solutions of nonlinear diffusion equations. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the determining equations used in the search for classical Lie symmetries

    A zeta function approach to the relation between the numbers of symmetry planes and axes of a polytope

    Full text link
    A derivation of the Ces\`aro-Fedorov relation from the Selberg trace formula on an orbifolded 2-sphere is elaborated and extended to higher dimensions using the known heat-kernel coefficients for manifolds with piecewise-linear boundaries. Several results are obtained that relate the coefficients, bib_i, in the Shephard-Todd polynomial to the geometry of the fundamental domain. For the 3-sphere we show that b4b_4 is given by the ratio of the volume of the fundamental tetrahedron to its Schl\"afli reciprocal.Comment: Plain TeX, 26 pages (eqn. (86) corrected

    Discrete analogues of the Liouville equation

    Full text link
    The notion of Laplace invariants is transferred to the lattices and discrete equations which are difference analogs of hyperbolic PDE's with two independent variables. The sequence of Laplace invariants satisfy the discrete analog of twodimensional Toda lattice. The terminating of this sequence by zeroes is proved to be the necessary condition for existence of the integrals of the equation under consideration. The formulae are presented for the higher symmetries of the equations possessing integrals. The general theory is illustrated by examples of difference analogs of Liouville equation.Comment: LaTeX, 15 pages, submitted to Teor. i Mat. Fi

    Classification of integrable discrete Klein-Gordon models

    Full text link
    The Lie algebraic integrability test is applied to the problem of classification of integrable Klein-Gordon type equations on quad-graphs. The list of equations passing the test is presented containing several well-known integrable models. A new integrable example is found, its higher symmetry is presented.Comment: 12 pages, submitted to Physica Script

    Biorthogonal Quantum Systems

    Full text link
    Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+\nu)^2+\sum_{k>0}\mu_{k}exp(ikx). In some non-trivial cases, equivalent hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.Comment: 34 pages, 5 eps figures; references added and other changes made to conform to journal versio

    Interacting Preformed Cooper Pairs in Resonant Fermi Gases

    Get PDF
    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, that can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the imbalanced Fermi gas added, new figure and references adde
    corecore