403 research outputs found

    Effect of argon ion energy on the performance of silicon nitridemultilayer permeation barriers grown by hot-wire CVD on polymers

    Get PDF
    One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.Permeation barriers for organic electronic devices on polymer flexible substrates were realized by combining stacked silicon nitride (SiNx) single layers (50 nm thick) deposited by hot-wire chemical vapor deposition process at low-temperature (~100°C) with a specific argon plasma treatment between two successive layers. Several plasma parameters (RF power density, pressure, treatment duration) as well as the number of single layers have been explored in order to improve the quality of permeation barriers deposited on polyethylene terephthalate. In this work, maximumion energy was highlighted as the crucial parameter making it possible to minimize water vapor transmission rate (WVTR), as determined by the electrical calcium test method, all the other parameters being kept fixed. Thus fixing the plasma treatment duration at 8 min for a stack of two SiNx single layers, a minimum WVTR of 5 × 10−4 g/(m2 day), measured at room temperature, was found for a maximum ion energy of ~30 eV. This minimum WVTR value was reduced to 7 × 10−5 g/(m2 day) for a stack of five SiNx single layers. The reduction in the permeability is interpreted as due to the rearrangement of atoms at the interfaces when average transferred ion energy to target atoms exceeds threshold displacement energy.The authors are grateful to Dr. R. Cortes (PMC, Ecole Polytechnique) for XRR analysis, to Dr. P. Chapon (HORIBA Jobin Yvon) for GD-OES analysis and Dr. J. Leroy (CEA Saclay) for XPS analysis. This work was partly supported by the PICS (FrenchPortuguese) project No. 5336. One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support

    Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching

    No full text
    International audienceConcentration quenching is a major impediment to efficient organic light-emitting devices. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red-emitting starbust triarylamine molecule (4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene, named FVIN), exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 CIE coordinates). A comparison of FVIN with the archetypal DCM dye is presented in an identical multilayer OLED structure

    The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers

    Get PDF
    In this work we produce and study silicon nitride (SiNx) thin films deposited by Hot Wire Chemical Vapor Depo- sition (HW-CVD) to be used as encapsulation barriers for flexible organic photovoltaic cells fabricated on poly- ethylene terephthalate (PET) substrates in order to increase their shelf lifetime. We report on the results of SiNx double-layers and on the equivalent double-layer stack where an Ar-plasma surface treatment was performed on the first SiNx layer. The Ar-plasma treatment may under certain conditions influences the structure of the interface between the two subsequent layers and thus the barrier properties of the whole system. We focus our attention on the effect of plasma treatment time on the final barrier properties. We assess the encapsulation barrier properties of these layers, using the calcium degradation test where changes in the electrical conductance of encapsulated Ca sensors are monitored with time. The water vapor transmission rate (WVTR) is found to be ~3 × 10−3 g/m2·day for stacked SiNx double-layer with 8 min Ar plasma surface treatment.FCT - CNRS PICS (French–Portuguese no: 5336) projectDirection des Relations Extérieures, Ecole Polytechniqu

    Diffusion of triplet excitons in an operational Organic Light Emitting Diode

    Full text link
    Measurements of the diffusion length L for triplet excitons in small molecular-weight organic semiconductors are commonly carried out using a technique in which a phosphorescent-doped probe layer is set in the vicinity of a supposed exciton generation zone. However, analyses commonly used to retrieve LL ignore microcavity effects that may induce a strong modulation of the emitted light as the position of the exciton probe is shifted. The present paper investigates in detail how this technique may be improved to obtain more accurate results for L. The example of 4,4'-bis(carbazol-9-yl)1,1'-biphenyl (CBP) is taken, for which a triplet diffusion length of L=16 +/- 4 nm (at 3 mA/cm2) is inferred from experiments. The influence of triplet-triplet annihilation, responsible for an apparent decrease of L at high current densities, is theoretically investigated, as well as the 'invasiveness' of the thin probe layer on the exciton distribution. The interplay of microcavity effects and direct recombinations is demonstrated experimentally with the archetypal trilayer structure [N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)]-4,4'-diaminobiphenyl (NPB)/CBP/ 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (named bathocuproine, BCP). It is shown that in this device holes do cross the NPB/CBP junction, without the assistance of electrons and despite the high energetic barrier imposed by the shift between the HOMO levels. The use of the variable-thickness doped layer technique in this case is then discussed. Finally, some guidelines are given for improving the measure of the diffusion length of triplet excitons in operational OLEDs, applicable to virtually any small molecular-weight material.Comment: Accepted for publication in Physical Review

    The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization

    Get PDF
    Preclinical imaging studies offer a unique access to the rat brain, allowing investigations that go beyond what is possible in human studies. Unfortunately, these techniques still suffer from a lack of dedicated and standardized neuroimaging tools, namely brain templates and descriptive atlases. Here, we present two rat brain MRI templates and their associated gray matter, white matter and cerebrospinal fluid probability maps, generated from ex vivo [Formula: see text]-weighted images (90 µm isotropic resolution) and in vivo T2-weighted images (150 µm isotropic resolution). In association with these templates, we also provide both anatomical and functional 3D brain atlases, respectively derived from the merging of the Waxholm and Tohoku atlases, and analysis of resting-state functional MRI data. Finally, we propose a complete set of preclinical MRI reference resources, compatible with common neuroimaging software, for the investigation of rat brain structures and functions.This work is part of the SIGMA project with the reference FCT-ANR/NEU-OSD/0258/2012, co-financed by the French public funding agency ANR (Agence Nationale pour laRecherche, APP Blanc International II 2012), the Portuguese FCT (Fundação para aCiência e Tecnologia) and the Portuguese North Regional Operational Program (ON.2—O Novo Norte) under the National Strategic Reference Framework (QREN), through theEuropean Regional Development Fund (FEDER) as well as the Projecto Estratégico co-funded by FCT (PEst-C/SAU/LA0026-/2013) and the European Regional DevelopmentFund COMPETE (FCOMP-01-0124-FEDER-037298). D.A.B. and A.N. were funded bygrants from FCT-ANR/NEU-OSD/0258/2012. R.M. was supported by the FCT fellow-ship grant with the reference PDE/BDE/113604/2015 from the PhDiHES program. A.C.was supported by a grant from the foundation NRJ. P.M. was funded by FundaçãoCalouste Gulbenkian (Portugal;‘Better mental health during ageing based on temporalprediction of individual brain ageing trajectories TEMPO’) with Grant Number P-139977. France Life Imaging is acknowledged for its support in funding the NeuroSpinplatform of preclinical MRI scanners. The authors also acknowledge and thank EdwardGanz, MD, for proof reading our work

    The camera of the fifth H.E.S.S. telescope. Part I: System description

    Full text link
    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM

    Random Convex Hulls and Extreme Value Statistics

    Full text link
    In this paper we study the statistical properties of convex hulls of NN random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy's formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of nn independent random walks. In the continuum time limit this reduces to nn independent planar Brownian trajectories for which we compute exactly, for all nn, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting

    Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus

    Get PDF
    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled by genotype I + bc-3 was combined in the fabada line A3308
    corecore