191 research outputs found
Polymer-coated superparamagnetic iron oxide nanoparticles as T-2 contrast agent for MRI and their uptake in liver
Aim: To study the efficiency of multifunctional polymer-based superparamagnetic iron oxide nanoparticles (bioferrofluids) as a T-2 magnetic resonance contrast agent and their uptake and toxicity in liver. Materials & methods: Mice were intravenously injected with bioferrofluids and Endorem (R). The magnetic resonance efficiency, uptake and in vivo toxicity were investigated by means of magnetic resonance imaging (MRI) and histological techniques. Results: Bioferrofluids are a good T-2 contrast agent with a higher r(2)/r(1) ratio than Endorem. Bioferrofluids have a shorter blood circulation time and persist in liver for longer time period compared with Endorem. Both bioferrofluids and Endorem do not generate any noticeable histological lesions in liver over a period of 60 days post-injection. Conclusion: Our bioferrofluids are powerful diagnostic tool without any observed toxicity over a period of 60 days post-injection. Lay abstract: Several superparamagnetic iron oxide nanoparticles (SPIONs) preparations have been approved by US FDA for clinical use as MRI contrast agents. In recent years, we have been developing a synthetic multifunctional platform for SPIONs based on the use of polymers. In this report, we explored the diagnostic potential of these nanoparticles (herein called bioferrofluids) as an MRI contrast agent and their uptake in liver, without neglecting their toxicological effects. Results show that our bioferrofluids are a good T-2 contrast agent without any observed toxicity in liver
Impacto de la estimulación subtalámica a largo plazo sobre la situación cognitiva de los pacientes con enfermedad de Parkinson avanzada
Objetivo
El objetivo es evaluar los efectos de la estimulación cerebral profunda del núcleo subtalámico bilateral (STN-DBS) sobre el estado cognitivo de los pacientes con enfermedad de Parkinson 5 años después de la cirugía.
Materiales y métodos
En este estudio prospectivo se incluyeron 50 pacientes con enfermedad de Parkinson (62,5% hombres, edad media 62,2 ± 8,2 años y duración de la enfermedad 14,1 ± 6,3 años) sometidos a STN-DBS. Todos los pacientes fueron evaluados preoperatoriamente y un año después de la cirugía, y 40 pacientes fueron seguidos hasta 5 años. En cada visita se realizaron las siguientes evaluaciones neuropsicológicas: Mini-Mental State Examination, Mattis Dementia Rating Scale (MDRS), test de secuencias números-letras de WAIS III-LN, Prueba de dibujo de reloj, Prueba de aprendizaje verbal auditivo Rey, la Prueba de retención visual de Benton, la Prueba de juicio de orientación de línea de Benton, la fluidez verbal fonética y semántica, la Prueba Stroop y la Escala de clasificación de depresión de Montgomery-Asberg.
Resultados
Anualmente se observaron reducciones en la puntación de Mini-Mental State Examination (–0,89%), Prueba del dibujo de reloj (–2,61%) y MDRS (–1,72%), fueron más marcados tanto para la fluidez verbal fonética (–13,28%) como semántica (–12,40%). Para la Prueba de aprendizaje verbal auditivo Rey observamos un deterioro en la capacidad de recuerdo diferido (–10,12%) un año después de la cirugía. A los 5 años la mayor parte del deterioro se produjo en la fluidez verbal, con reducciones adicionales de 16,10% y 16,60% para la fluidez verbal semántica y fonética, respectivamente. Se observó un empeoramiento más moderado del recuerdo inmediato (–16,87%), WAIS III-LN (–16,67%) y de la prueba de orientación lineal de Benton (–11,56%).
Discusión
La STN-DBS no condujo a deterioro cognitivo global a los 5 años de la cirugía. Hubo un deterioro significativo en la función verbal desde el primer año de la cirugía. El deterioro de la capacidad de aprendizaje y de las funciones visuoespaciales podría atribuirse al propio proceso degenerativo de la enfermedad.This study was partially funded by research grant INT-BC2016-1 from Biocruces Bizkaia Health Research Institute
Secuencia de tratamiento óptima para el tratamiento del mieloma múltiple en España un modelo secuencial
PO-014
Introducción: El mieloma múltiple (MM) se sigue considerando una enfermedad incurable. Sin embargo, con la disponibilidad de nuevos fármacos, las opciones de tratamiento para pacientes de MM han incrementado drásticamente, aumentando a su vez su supervivencia. Esto hace que sea necesario evaluar la secuencia de tratamiento más apropiada, en lugar de los regímenes de manera aislada. Junto con la seguridad y la eficacia, la evaluación económica se está convirtiendo en una herramienta cada vez más útil y necesaria en la toma de decisiones.
Objetivos: El estudio tiene como objetivo estimar los beneficios y costes de las secuencias de tratamiento en el MM más comunes para establecer un umbral de eficiencia y determinar la ratio coste-eficacia incremental (ICER) entre las secuencias.
Métodos: Se diseñó un modelo de Markov con 5 estados de salud que representan líneas de tratamiento (1ª, 2ª, 3ª y posteriores) y muerte, con 3 subestados relacionados con la respuesta (respuesta completa [CR], respuesta parcial [PR] y no respuesta [NR]) para simular la transición de pacientes (cada 4 semanas) a lo largo del curso de la enfermedad. Un consejo de hematólogos definió veinte posibles secuencias de tratamiento, como las más utilizadas en la práctica clínica en España. Una revisión de la literatura permitió la identificación de los estudios para estimar las tasas de respuesta específica de cada terapia y los eventos adversos (EA), junto con el tiempo de progresión dependiente de la respuesta requerido para modelar la transición entre las líneas terapéuticas sucesivas y los valores de utilidad necesarios para evaluar la calidad de vida de los pacientes para poder estimar la variable principal del estudio ..
Suicide attempts and related factors in patients admitted to a general hospital: a ten-year cross-sectional study (1997-2007)
[Abstract] Background: Suicide and suicide attempts represent a severe problem for public health services. The aim of this study is to determine the socio-demographic and psychopathological variables associated with suicide attempts in the population admitted to a General Hospital.
Methods: An observational-descriptive study of patients admitted to the A Coruña University Hospital (Spain) during the period 1997-2007, assessed by the Consultation and Liaison Psychiatric Unit. We include n = 5,234 admissions from 4,509 patients. Among these admissions, n = 361 (6.9%) were subsequent to a suicide attempt. Admissions arising from a suicide attempt were compared with admissions occurring due to other reasons.Multivariate generalised estimating equation logistic regression models were used to examine factors associated with suicide attempts.
Results: Adjusting by age, gender, educational level, cohabitation status, being employed or unemployed, the psychiatric diagnosis at the time of the interview and the information on previous suicide attempts, we found that the variables associated with the risk of a suicide attempt were: age, psychiatric diagnosis and previous suicide attempts. The risk of suicide attempts decreases with age (OR = 0.969). Psychiatric diagnosis was associated with a higher risk of suicide attempts, with the highest risk being found for Mood or Affective Disorders (OR = 7.49), followed by Personality Disorders (OR = 7.31), and Schizophrenia and Other Psychotic Disorders (OR = 5.03).The strongest single predictive factor for suicide attempts was a prior history of attempts (OR = 23.63).
Conclusions: Age, psychopathological diagnosis and previous suicide attempts are determinants of suicide attempts
APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies.
OBJECTIVE
To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations.
METHODS
To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes.
RESULTS
A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%.
CONCLUSIONS
The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly
Cognitive composites for genetic frontotemporal dementia: GENFI-Cog
Background
Clinical endpoints for upcoming therapeutic trials in frontotemporal dementia (FTD) are increasingly urgent. Cognitive composite scores are often used as endpoints but are lacking in genetic FTD. We aimed to create cognitive composite scores for genetic frontotemporal dementia (FTD) as well as recommendations for recruitment and duration in clinical trial design.
Methods
A standardized neuropsychological test battery covering six cognitive domains was completed by 69 C9orf72, 41 GRN, and 28 MAPT mutation carriers with CDR® plus NACC-FTLD ≥ 0.5 and 275 controls. Logistic regression was used to identify the combination of tests that distinguished best between each mutation carrier group and controls. The composite scores were calculated from the weighted averages of test scores in the models based on the regression coefficients. Sample size estimates were calculated for individual cognitive tests and composites in a theoretical trial aimed at preventing progression from a prodromal stage (CDR® plus NACC-FTLD 0.5) to a fully symptomatic stage (CDR® plus NACC-FTLD ≥ 1). Time-to-event analysis was performed to determine how quickly mutation carriers progressed from CDR® plus NACC-FTLD = 0.5 to ≥ 1 (and therefore how long a trial would need to be).
Results
The results from the logistic regression analyses resulted in different composite scores for each mutation carrier group (i.e. C9orf72, GRN, and MAPT). The estimated sample size to detect a treatment effect was lower for composite scores than for most individual tests. A Kaplan-Meier curve showed that after 3 years, ~ 50% of individuals had converted from CDR® plus NACC-FTLD 0.5 to ≥ 1, which means that the estimated effect size needs to be halved in sample size calculations as only half of the mutation carriers would be expected to progress from CDR® plus NACC FTLD 0.5 to ≥ 1 without treatment over that time period.
Discussion
We created gene-specific cognitive composite scores for C9orf72, GRN, and MAPT mutation carriers, which resulted in substantially lower estimated sample sizes to detect a treatment effect than the individual cognitive tests. The GENFI-Cog composites have potential as cognitive endpoints for upcoming clinical trials. The results from this study provide recommendations for estimating sample size and trial duration
A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort
Impaired semantic knowledge is a characteristic feature of some forms of frontotemporal dementia (FTD), particularly the sporadic disorder semantic dementia. Less is known about semantic cognition in the genetic forms of FTD caused by mutations in the genes MAPT, C9orf72, and GRN. We developed a modified version of the Camel and Cactus Test (mCCT) to investigate the presence of semantic difficulties in a large genetic FTD cohort from the Genetic FTD Initiative (GENFI) study. Six-hundred-forty-four participants were tested with the mCCT including 67 MAPT mutation carriers (15 symptomatic, and 52 in the presymptomatic period), 165 GRN mutation carriers (33 symptomatic, 132 presymptomatic), and 164 C9orf72 mutation carriers (56 symptomatic, 108 presymptomatic) and 248 mutation-negative members of FTD families who acted as a control group. The presymptomatic mutation carriers were further split into those early and late in the presymptomatic period (more than vs. within 10 years of expected symptom onset). Groups were compared using a linear regression model, adjusting for age and education, with bootstrapping. Performance on the mCCT had a weak negative correlation with age (rho = −0.20) and a weak positive correlation with education (rho = 0.13), with an overall abnormal score (below the 5th percentile of the control population) being below 27 out of a total of 32. All three of the symptomatic mutation groups scored significantly lower than controls: MAPT mean 22.3 (standard deviation 8.0), GRN 24.4 (7.2), C9orf72 23.6 (6.5) and controls 30.2 (1.6). However, in the presymptomatic groups, only the late MAPT and late C9orf72 mutation groups scored lower than controls (28.8 (2.2) and 28.9 (2.5) respectively). Performance on the mCCT correlated strongly with temporal lobe volume in the symptomatic MAPT mutation group (rho > 0.80). In the C9orf72 group, mCCT score correlated with both bilateral temporal lobe volume (rho > 0.31) and bilateral frontal lobe volume (rho > 0.29), whilst in the GRN group mCCT score correlated only with left frontal lobe volume (rho = 0.48). This study provides evidence for presymptomatic impaired semantic knowledge in genetic FTD. The different neuroanatomical associations of the mCCT score may represent distinct cognitive processes causing deficits in different groups: loss of core semantic knowledge associated with temporal lobe atrophy (particularly in the MAPT group), and impaired executive control of semantic information associated with frontal lobe atrophy. Further studies will be helpful to address the longitudinal change in mCCT performance and the exact time at which presymptomatic impairment occurs
Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia
Background There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker.
Methods Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-C linical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures.
Results Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe.
Conclusions Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials
Age at symptom onset and death and disease duration in genetic frontotemporal dementia : an international retrospective cohort study
Background: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. Methods: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. Findings: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49\ub75 years (SD 10\ub70; onset) and 58\ub75 years (11\ub73; death) in the MAPT group, 58\ub72 years (9\ub78; onset) and 65\ub73 years (10\ub79; death) in the C9orf72 group, and 61\ub73 years (8\ub78; onset) and 68\ub78 years (9\ub77; death) in the GRN group. Mean disease duration was 6\ub74 years (SD 4\ub79) in the C9orf72 group, 7\ub71 years (3\ub79) in the GRN group, and 9\ub73 years (6\ub74) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0\ub745 between individual and parental age at onset, r=0\ub763 between individual and mean family age at onset, r=0\ub758 between individual and parental age at death, and r=0\ub769 between individual and mean family age at death) than in either the C9orf72 group (r=0\ub732 individual and parental age at onset, r=0\ub736 individual and mean family age at onset, r=0\ub738 individual and parental age at death, and r=0\ub740 individual and mean family age at death) or the GRN group (r=0\ub722 individual and parental age at onset, r=0\ub718 individual and mean family age at onset, r=0\ub722 individual and parental age at death, and r=0\ub732 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35\u201362, for age at onset; 61%, 47\u201373, for age at death), and even more by family membership (66%, 56\u201375, for age at onset; 74%, 65\u201382, for age at death). In the GRN group, only 2% (0\u201310) of the variability of age at onset and 9% (3\u201321) of that of age of death was explained by the specific mutation, whereas 14% (9\u201322) of the variability of age at onset and 20% (12\u201330) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11\u201326) of the variability of age at onset and 19% (12\u201329) of that of age at death. Interpretation: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. Funding: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society
Recommended from our members
A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Supplementary material: Supplementary material is available at Brain online: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/brain/145/5/10.1093_brain_awab382/1/awab382_supplementary_data.zip?Expires=1665139578&Signature=C7VStQxldRqnpcchAWh4igaKwveciF~gaQCbInqMnI1YkIFV0euPXlI-0ZlRZ26hbRum6myjm88d3KzOM-wqVG~H7JO9TTUXoyi-n3hRRd1a4Vw0Hay9ykagca92gMqWij5ax4WzsEGlv~dKGSKKivH02pflzQyDAwF6xjjObYRYe29grdOZQ5h8orT6XNAdK5YFqpiX7L6mpVaNs7AOgNDdxtwshaa4kq1xxCgojTgAaIR3WFTFDpHkJ6wnhncxuteykTzq5~w1RCoDIfKQSA9C42i~iWryOeOvjv-P6j-R0tSkDGzFKcI3kUo3lUT9GiPG-vDwAO5EsLkUikJLOw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA.GENFI consortium members
Full details are available in the Supplementary material.
Sónia Afonso, Maria Rosario Almeida, Sarah Anderl-Straub, Christin Andersson, Anna Antonell, Silvana Archetti, Andrea Arighi, Mircea Balasa, Myriam Barandiaran, Nuria Bargalló, Robart Bartha, Benjamin Bender, Alberto Benussi, Luisa Benussi, Valentina Bessi, Giuliano Binetti, Sandra Black, Martina Bocchetta, Sergi Borrego-Ecija, Jose Bras, Rose Bruffaerts, Marta Cañada, Valentina Cantoni, Paola Caroppo, David Cash, Miguel Castelo-Branco, Rhian Convery, Thomas Cope, Giuseppe Di Fede, Alina Díez, Diana Duro, Chiara Fenoglio, Camilla Ferrari, Catarina B. Ferreira, Nick Fox, Morris Freedman, Giorgio Fumagalli, Alazne Gabilondo, Roberto Gasparotti, Serge Gauthier, Stefano Gazzina, Giorgio Giaccone, Ana Gorostidi, Caroline Greaves, Rita Guerreiro, Tobias Hoegen, Begoña Indakoetxea, Vesna Jelic, Hans-Otto Karnath, Ron Keren, Tobias Langheinrich, Maria João Leitão, Albert Lladó, Gemma Lombardi, Sandra Loosli, Carolina Maruta, Simon Mead, Gabriel Miltenberger, Rick van Minkelen, Sara Mitchell, Katrina Moore, Benedetta Nacmias, Jennifer Nicholas, Linn Öijerstedt, Jaume Olives, Sebastien Ourselin, Alessandro Padovani, Georgia Peakman, Michela Pievani, Yolande Pijnenburg, Cristina Polito, Enrico Premi, Sara Prioni, Catharina Prix, Rosa Rademakers, Veronica Redaelli, Tim Rittman, Ekaterina Rogaeva, Pedro Rosa-Neto, Giacomina Rossi, Martin Rosser, Beatriz Santiago, Elio Scarpini, Sonja Schönecker, Elisa Semler, Rachelle Shafei, Christen Shoesmith, Miguel Tábuas-Pereira, Mikel Tainta, Ricardo Taipa, David Tang-Wai, David L Thomas, Paul Thompson, Hakan Thonberg, Carolyn Timberlake, Pietro Tiraboschi, Emily Todd, Philip Van Damme, Mathieu Vandenbulcke, Michele Veldsman, Ana Verdelho, Jorge Villanua, Jason Warren, Ione Woollacott, Elisabeth Wlasich, Miren Zulaica.Copyright © The Author(s) 2021. Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.Deltaplan Dementie (The Netherlands Organisation
for Health Research and Development and Alzheimer Nederland;
grant numbers 733050813,733050103 and 733050513), the Bluefield
Project to Cure Frontotemporal Dementia, the Dioraphte founda tion (grant number 1402 1300), the European Joint Programme—
Neurodegenerative Disease Research and the Netherlands
Organisation for Health Research and Development (PreFrontALS:
733051042, RiMod-FTD: 733051024); V.V. and S.K. have received
funding from the European Union’s Horizon 2020 research and in novation programme under grant agreement no. 666992
(EuroPOND). E.B. was supported by the Hartstichting (PPP
Allowance, 2018B011); in Belgium by the Mady Browaeys Fonds
voor Onderzoek naar Frontotemporale Degeneratie; in the UK by
the MRC UK GENFI grant (MR/M023664/1); J.D.R. is supported by an
MRC Clinician Scientist Fellowship (MR/M008525/1) and has
received funding from the NIHR Rare Disease Translational
Research Collaboration (BRC149/NS/MH); I.J.S. is supported by the
Alzheimer’s Association; J.B.R. is supported by the Wellcome Trust
(103838); in Spain by the Fundacio´ Marato´ de TV3 (20143810 to
R.S.V.); in Germany by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy within the framework of the Munich Cluster for Systems
Neurology (EXC 2145 SyNergy—ID 390857198) and by grant 779357
‘Solve-RD’ from the Horizon 2020 Research and Innovation
Programme (to MS); in Sweden by grants from the Swedish FTD
Initiative funded by the Scho¨rling Foundation, grants from JPND
PreFrontALS Swedish Research Council (VR) 529–2014-7504,
Swedish Research Council (VR) 2015–02926, Swedish Research
Council (VR) 2018–02754, Swedish Brain Foundation, Swedish
Alzheimer Foundation, Stockholm County Council ALF, Swedish
Demensfonden, Stohnes foundation, Gamla Tja¨narinnor,
Karolinska Institutet Doctoral Funding and StratNeuro. H.Z. is a
Wallenberg Scholar
- …