11,723 research outputs found

    Entanglement and nonclassicality for multi-mode radiation field states

    Full text link
    Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multi-mode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beamsplitters, in a transparent manner. For single mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beamsplitter, these conditions turn exactly into signatures of NPT entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two--mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beamsplitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three--mode beamsplitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.Comment: Latex, 46 page

    Magellan: Preliminary description of Venus surface geologic units

    Get PDF
    Observations from approximately one-half of the Magellan nominal eight-month mission to map Venus are summarized. Preliminary compilation of initial geologic observations of the planet reveals a surface dominated by plains that are characterized by extensive and intensive volcanism and tectonic deformation. Four broad categories of units have been identified: plains units, linear belts, surficial units, and terrain units

    Dobinski-type relations: Some properties and physical applications

    Full text link
    We introduce a generalization of the Dobinski relation through which we define a family of Bell-type numbers and polynomials. For all these sequences we find the weight function of the moment problem and give their generating functions. We provide a physical motivation of this extension in the context of the boson normal ordering problem and its relation to an extension of the Kerr Hamiltonian.Comment: 7 pages, 1 figur

    Some useful combinatorial formulae for bosonic operators

    Get PDF
    We give a general expression for the normally ordered form of a function F(w(a,a*)) where w is a function of boson annihilation and creation operators satisfying [a,a*]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional Quantum Field Theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type hamiltonians.Comment: 8 pages, 3 figures, 17 reference

    A generic Hopf algebra for quantum statistical mechanics

    Get PDF
    In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quantum field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.Comment: 8 pages/(4 pages published version), 1 Figure. arXiv admin note: text overlap with arXiv:1011.052

    Identification and characterization of the human type II collagen gene (COL2A1).

    Full text link

    From Quantum Mechanics to Quantum Field Theory: The Hopf route

    Full text link
    We show that the combinatorial numbers known as {\em Bell numbers} are generic in quantum physics. This is because they arise in the procedure known as {\em Normal ordering} of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, {\it inter alia}. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the {\em exponential generating function} of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function. We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function. Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems

    Hierarchical Dobinski-type relations via substitution and the moment problem

    Full text link
    We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form exp(x (a*)^r a), r=1,2,..., under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: (a)the property of being the solution of the Stieltjes moment problem; and (b) the representation of these sequences through infinite series (Dobinski-type relations). We present a number of examples of such composition satisfying properties (a) and (b). We obtain new Dobinski-type formulas and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.Comment: 14 pages, 31 reference

    What determines auditory similarity? The effect of stimulus group and methodology.

    Get PDF
    Two experiments on the internal representation of auditory stimuli compared the pairwise and grouping methodologies as means of deriving similarity judgements. A total of 45 undergraduate students participated in each experiment, judging the similarity of short auditory stimuli, using one of the methodologies. The experiments support and extend Bonebright's (1996) findings, using a further 60 stimuli. Results from both methodologies highlight the importance of category information and acoustic features, such as root mean square (RMS) power and pitch, in similarity judgements. Results showed that the grouping task is a viable alternative to the pairwise task with N > 20 sounds whilst highlighting subtle differences, such as cluster tightness, between the different task results. The grouping task is more likely to yield category information as underlying similarity judgements

    Spatio-Temporal Scaling of Solar Surface Flows

    Full text link
    The Sun provides an excellent natural laboratory for nonlinear phenomena. We use motions of magnetic bright points on the solar surface, at the smallest scales yet observed, to study the small scale dynamics of the photospheric plasma. The paths of the bright points are analyzed within a continuous time random walk framework. Their spatial and temporal scaling suggest that the observed motions are the walks of imperfectly correlated tracers on a turbulent fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter
    corecore