19,688 research outputs found

    Aspects of parity, CP, and time reversal violation in hot QCD

    Full text link
    We discuss various aspects of parity, CP, and time reversal invariances in QCD. In particular, we focus attention on the previously proposed possibility that these experimentally established symmetries of strong interactions may be broken at finite temperature and/or density. This would have dramatic signatures in relativistic heavy ion collisions; we describe some of the most promising signals.Comment: Latex; 14 pages + 3 figs. Talk given at SEWM2000, Marseille, June 14-17 2000 and ISMD2000, Tihany, October 9-15 200

    A simple and efficient numerical scheme to integrate non-local potentials

    Full text link
    As nuclear wave functions have to obey the Pauli principle, potentials issued from reaction theory or Hartree-Fock formalism using finite-range interactions contain a non-local part. Written in coordinate space representation, the Schrodinger equation becomes integro-differential, which is difficult to solve, contrary to the case of local potentials, where it is an ordinary differential equation. A simple and powerful method has been proposed several years ago, with the trivially equivalent potential method, where non-local potential is replaced by an equivalent local potential, which is state-dependent and has to be determined iteratively. Its main disadvantage, however, is the appearance of divergences in potentials if the wave functions have nodes, which is generally the case. We will show that divergences can be removed by a slight modification of the trivially equivalent potential method, leading to a very simple, stable and precise numerical technique to deal with non-local potentials. Examples will be provided with the calculation of the Hartree-Fock potential and associated wave functions of 16O using the finite-range N3LO realistic interaction.Comment: 8 pages, 2 figures, submitted to Eur. Phys. J.

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    Asteroseismology of delta Scuti stars in open clusters: Praesepe

    Full text link
    The present paper provides a general overview of the asteroseismic potential of delta Scuti stars in clusters, in particular focusing on convection diagnostics. We give a summarise of the last results obtained by the authors for the Praesepe cluster of which five delta Scuti stars are analysed. In that work, linear analysis is confronted with observations, using refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations. A single, complete, and coherent solution for all the selected stars is found, which lead the authors to find important restrictions to the convection description for a certain range of effective temperatures. Furthermore, the method used allowed to give an estimate of the global parameters of the selected stars and constrain the cluster.Comment: 6 pages, 1 figure. Accepted for publication in Communications in Asteroseismolog

    Modeling laser wakefield accelerators in a Lorentz boosted frame

    Get PDF
    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively

    X-ray microanalysis in STEM of short-term physico-chemical reactions at bioactive glass particles / biological fluids interface. Determination of O/Si atomic ratios

    Get PDF
    Short-term physico-chemical reactions at the interface between bioactive glass particles and biological fluids are studied and we focus our attention on the measurements of O/Si atomic ratio. The studied bioactive glass is in the SiO2-Na2O-CaO-P2O5-K2O-Al2O3-MgO system. The elemental analysis is performed at the submicrometer scale by STEM associated with EDXS and EELS. We previously developed an EDXS quantification method based on the ratio method and taking into account local absorption corrections. In this way, we use EELS data to determine, by an iterative process, the local mass thickness which is an essential parameter to correct absorption in EDXS spectra. After different delays of immersion of bioactive glass particles in a simulated biological solution, results show the formation of different surface layers at the bioactive glass periphery. Before one day of immersion, we observe the presence of an already shown (Si,O,Al) rich layer at the periphery. In this paper, we demonstrate that a thin electron dense (Si,O) layer is formed on top of the (Si,O,Al) layer. In this (Si,O) layer, depleted in aluminium, we point out an increase of oxygen weight concentration which can be interpreted by the presence of Si(OH)4 groups, that permit the formation of a (Ca,P) layer. Aluminium plays a role in the glass solubility and may inhibit apatite nucleation. After the beginning of the (Ca,P) layer formation, the size of the electron dense (Si,O) layer decreases and tends to disappear. After two days of immersion, the (Ca,P) layer grows in thickness and leads to apatite precipitatio

    Symmetry and inert states of spin Bose Condensates

    Full text link
    We construct the list of all possible inert states of spin Bose condensates for S≤4S \le 4. In doing so, we also obtain their symmetry properties. These results are applied to classify line defects of these spin condensates at zero magnetic field.Comment: an error in Sec III C correcte

    Structure of smectic defect cores: an X-ray study of 8CB liquid crystal ultra-thin films

    Get PDF
    We study the structure of very thin liquid crystal films frustrated by antagonistic anchorings in the smectic phase. In a cylindrical geometry, the structure is dominated by the defects for film thicknesses smaller than 150 nm and the detailed topology of the defects cores can be revealed by x-ray diffraction. They appear to be split in half tube-shaped Rotating Grain Boundaries (RGB). We determine the RGB spatial extension and evaluate its energy per unit line. Both are significantly larger than the ones usually proposed in the literatureComment: 4 page

    Electron-phonon coupling in the C60 fullerene within the many-body GW approach

    Full text link
    We study the electron-phonon coupling in the C60 fullerene within the first-principles GW approach, focusing on the lowest unoccupied t1u three-fold electronic state which is relevant for the superconducting transition in electron doped fullerides. It is shown that the strength of the coupling is significantly enhanced as compared to standard density functional theory calculations with (semi)local functionals, with a 48% increase of the electron-phonon potential Vep. The calculated GW value for the contribution from the Hg modes of 93 meV comes within 4% of the most recent experimental values. The present results call for a reinvestigation of previous density functional based calculations of electron-phonon coupling in covalent systems in general.Comment: 4 pages, 0 figur

    Charge transport in nanoscale vertical organic semiconductor pillar devices

    Get PDF
    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene)(P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 10610^6 A/m2^2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation.Comment: 30 pages, 8 figures, 1 tabl
    • …
    corecore