215 research outputs found

    Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Get PDF
    Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoid

    Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Get PDF
    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons

    Thermodynamic analysis of humidification dehumidification desalination cycles

    Get PDF
    Humidification–dehumidification desalination (HDH) is a promising technology for small-scale water production applications. There are several embodiments of this technology which have been investigated by researchers around the world. However, from a previous literature [1], we have found that no study carried out a detailed thermodynamic analysis in order to improve and/ or optimize the system performance. In this paper, we analyze the thermodynamic performance of various HDH cycles by way of a theoretical cycle analysis. In addition, we propose novel high performance variations on those cycles. These high-performance cycles include multi-extraction, multi-pressure and thermal vapor compression cycles. It is predicted that the systems based on these novel cycles will have gained output ratio in excess of 5 and will outperform existing HDH systems.King Fahd University of Petroleum and MineralsCenter for Clean Water and Clean Energy at MIT and KFUP

    Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Get PDF
    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted

    Subclinical Ochronosis Features In Alkaptonuria: A Cross-Sectional Study

    Get PDF
    Background Alkaptonuria (AKU) is present from birth, yet clinical effects are considered to appear later in life. Morbidity of AKU, considered irreversible, is secondary to ochronosis. Age of ochronosis onset is not clearly known. Nitisinone profoundly lowers homogentisic acid (HGA), the metabolic defect in AKU. Nitisinone also arrests ochronosis and slows progression of AKU. However, tyrosinaemia post-nitisinone has been associated with corneal keratopathy, rash and cognitive impairment in HT 1. The optimal time to start nitisinone in AKU is unknown. Methods In an open, cross-sectional, single-site study, 32 patients with AKU were to be recruited. The primary outcome was presence of ochronosis in an ear biopsy. Secondary outcomes included analysis of photographs of eyes/ears, serum/urine HGA, markers of tissue damage/inflammation/oxidation, MRI imaging, gait, quality of life and Alkaptonuria Severity Score Index (qAKUSSI). Results Thirty patients, with mean age (SD) 38 (14) years, were recruited. Percentage pigmentation within ear biopsies increased with age. Ear pigmentation was detected in a 20-year-old woman implying ochronosis can start in patients before the age of 20. Gait and qAKUSSI were outside the normal range in all the patients with AKU. Conclusions Ochronosis can be present before age 20 years

    Efficacy and safety of bilateral continuous theta burst stimulation (cTBS) for the treatment of chronic tinnitus: design of a three-armed randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tinnitus, the perception of sound and noise in absence of an auditory stimulus, has been shown to be associated with maladaptive neuronal reorganization and increased activity of the temporoparietal cortex. Transient modulation of tinnitus by repetitive transcranial magnetic stimulation (rTMS) indicated that these areas are critically involved in the pathophysiology of tinnitus and suggested new treatment strategies. However, the therapeutic efficacy of rTMS in tinnitus is still unclear, individual response is variable, and the optimal stimulation area disputable. Recently, continuous theta burst stimulation (cTBS) has been put forward as an effective rTMS protocol for the reduction of pathologically enhanced cortical excitability.</p> <p>Methods</p> <p>48 patients with chronic subjective tinnitus will be included in this randomized, placebo controlled, three-arm trial. The treatment consists of two trains of cTBS applied bilaterally to the secondary auditory cortex, the temporoparietal associaction cortex, or to the lower occiput (sham condition) every working day for four weeks. Primary outcome measure is the change of tinnitus distress as quantified by the Tinnitus Questionnaire (TQ). Secondary outcome measures are tinnitus loudness and annoyance as well as tinnitus change during and after treatment. Audiologic and speech audiometric measurements will be performed to assess potential side effects. The aim of the present trail is to investigate effectiveness and safety of a four weeks cTBS treatment on chronic tinnitus and to compare two areas of stimulation. The results will contribute to clarify the therapeutic capacity of rTMS in tinnitus.</p> <p>Trial registration</p> <p>The trial was registered with the clinical trials register of <url>http://www.clinicaltrials.gov</url> (NCT00518024).</p

    Nitisinone arrests ochronosis and decreases rate of progression of Alkaptonuria: Evaluation of the effect of nitisinone in the United Kingdom National Alkaptonuria Centre.

    Get PDF
    QUESTION: Does Nitisinone prevent the clinical progression of the Alkaptonuria? FINDINGS: In this observational study on 39 patients, 2 mg of daily nitisinone inhibited ochronosis and significantly slowed the progression of AKU over a three-year period. MEANING: Nitisinone is a beneficial therapy in Alkaptonuria. BACKGROUND: Nitisinone decreases homogentisic acid (HGA), but has not been shown to modify progression of Alkaptonuria (AKU). METHODS: Thirty-nine AKU patients attended the National AKU Centre (NAC) in Liverpool for assessments and treatment. Nitisinone was commenced at V1 or baseline. Thirty nine, 34 and 22 AKU patients completed 1, 2 and 3 years of monitoring respectively (V2, V3 and V4) in the VAR group. Seventeen patients also attended a pre-baseline visit (V0) in the VAR group. Within the 39 patients, a subgroup of the same ten patients attended V0, V1, V2, V3 and V4 visits constituting the SAME Group. Severity of AKU was assessed by calculation of the AKU Severity Score Index (AKUSSI) allowing comparison between the pre-nitisinone and the nitisinone treatment phases. RESULTS: The ALL (sum of clinical, joint and spine AKUSSI features) AKUSSI rate of change of scores/patient/month, in the SAME group, was significantly lower at two (0.32 ± 0.19) and three (0.15 ± 0.13) years post-nitisinone when compared to pre-nitisinone (0.65 ± 0.15) (p < .01 for both comparisons). Similarly, the ALL AKUSSI rate of change of scores/patient/month, in the VAR group, was significantly lower at one (0.16 ± 0.08) and three (0.19 ± 0.06) years post-nitisinone when compared to pre-nitisinone (0.59 ± 0.13) (p < .01 for both comparisons). Combined ear and ocular ochronosis rate of change of scores/patient/month was significantly lower at one, two and three year's post-nitisinone in both VAR and SAME groups compared with pre-nitisinone (p < .05). CONCLUSION: This is the first indication that a 2 mg dose of nitisinone slows down the clinical progression of AKU. Combined ocular and ear ochronosis progression was arrested by nitisinone

    The Effect of Repetitive Transcranial Magnetic Stimulation on Gamma Oscillatory Activity in Schizophrenia

    Get PDF
    Gamma (γ) oscillations (30-50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ) during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive method to stimulate the cortex that has been shown to enhance cognition and γ oscillatory activity during WM.We examined the effect of 20 Hz rTMS over the DLPFC on γ oscillatory activity elicited during the N-back task in 24 patients with SCZ compared to 22 healthy subjects. Prior to rTMS, patients with SCZ elicited excessive γ oscillatory activity compared to healthy subjects across WM load. Active rTMS resulted in the reduction of frontal γ oscillatory activity in patients with SCZ, while potentiating activity in healthy subjects in the 3-back, the most difficult condition. Further, these effects on γ oscillatory activity were found to be specific to the frontal brain region and were absent in the parieto-occipital brain region.We suggest that this opposing effect of rTMS on γ oscillatory activity in patients with SCZ versus healthy subjects may be related to homeostatic plasticity leading to differential effects of rTMS on γ oscillatory activity depending on baseline differences. These findings provide important insights into the neurophysiological mechanisms underlying WM deficits in SCZ and demonstrated that rTMS can modulate γ oscillatory activity that may be a possible avenue for cognitive potentiation in this disorder

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)
    • …
    corecore