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Abstract 

 

Humidification dehumidification desalination (HDH) is a promising technology for small-scale 

water production applications. There are several embodiments of this technology which have 

been investigated by researchers around the world. However, from a previous literature review 

[1], we have found no study which carried out a detailed thermodynamic analysis in order to 

improve and/or optimize the system performance. In this paper, we analyze the thermodynamic 

performance of various HDH cycles by way of a theoretical cycle analysis. In addition, we 

propose novel high-performance variations on those cycles. These high-performance cycles 

include multi-extraction, multi-pressure and thermal vapor compression cycles. It is predicted 

that the systems based on these novel cycles will have gained-output ratio in excess of 7 and will 

outperform existing HDH systems. 

 

Key words: Humidification, Dehumidification, Desalination, Cycle analysis, Solar Energy, 

Cycle Optimization. 
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Nomenclature 

 
Symbols                                                                          Units 

g  specific molar Gibbs energy J/mol 

GOR gained output ratio - 

h specific enthalpy J/kg 

h specific molar enthalpy  J/mol 

hfg latent heat of vaporization  J/kg 

H  total enthalpy rate  W 

HCR heat capacity ratio  - 

m  mass flow rate  kg/s 

n  molar flow rate  mol/s 

P absolute pressure  Pa 

 inQ  heat rate input  W 

s specific entropy J/kgK 

s specific molar entropy  J/molK 

 sgen
  entropy generated  W/K 

T temperature  °C 

inW   work rate input  W 

Greek Symbols                  

 absolute humidity  kg/kg of dry air 

  isentropic efficiency - 

 component effectiveness - 

 relative humidity  - 

Subscript 
a humid air 

b brine 

c compressor 

d dehumidifier 

da dry air 

e expander 

h humidifier 

ht heater 

pw pure water 

w seawater 
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1. Introduction 

 

Widely used thermal desalination technologies such as multi-stage ash (MSF) and multi-effect 

distillation (MED) are not suitable for small scale (1-100 m
3
/day) applications. Reverse osmosis 

(RO) is suitable for these applications but it requires a continuous supply of electrical or 

mechanical energy. Many developing countries which suffer from water scarcity also lack in 

resources which can generate these sources of energy (fossil fuels). However, some of these 

countries have an abundance of solar energy. Solar photovolatics can be used to operate reverse 

osmosis units for small scale applications in these countries. But it may not be feasible due to the 

high cost of PV modules and maintenance of RO systems [2]. A much simpler option is to use 

the solar energy as a source of thermal energy. This requires us to develop desalination 

technologies which can use this energy in an efficient way. 

One such technology, which mimics nature's water (rain) cycle, is the humidification 

dehumidification (HDH) desalination cycle. This technology has received ongoing attention in 

recent years and a few researchers have investigated specific realizations of this technology. The 

simplest form of the HDH process is illustrated in Fig. 1. The process consists of three 

subsystems: (a) an air and/or the water heater, which can use the solar energy; (b) a humidifier or 

the evaporator; and (c) a dehumidifier or the condenser. The cycle illustrated in Fig. 1 is just one 

embodiment of the HDH technology. The various cycle configurations are classified as closed-

water open-air (CWOA) and closed-air open-water (CAOW) cycles. A closed-water open-air 

cycle [3, 4, 5] is one in which the air is taken in, humidified, partially dehumidified and released 

in an open cycle while the water is recirculated, whereas in a closed air open-water cycle           

[6, 7, 8, 9] the air is circulated in a closed loop between the humidifier and the dehumidifier 

while the water cycle is open loop. The air in these systems can be circulated by either natural 

convection or mechanical blowers. Also, these HDH systems are classified based on the type of 

heating used as water or air heating systems.  

From the literature cited above and a previous literature review [1], we have found no 

study which systematically attempts to improve and/or optimize the cycle performance by 

modifying the cycle itself. Hence, the objective of this paper is to analyze the thermodynamic 
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performance of various HDH cycles in literature and to propose novel high-performance 

variations on those cycles. 

 

2. Modeling details 

In order to evaluate the theoretical performance of various HDH cycles, a thermodynamic cycle 

analysis has been performed. In performing the analysis the following approximations have been 

made: 

 The processes involved operate at steady-state conditions. 

 There is no heat loss from the humidifier or the dehumidifier to the ambient. 

 Pumping and blower power is negligible compared to the energy input in the heater. 

 Kinetic and potential energy terms are neglected in the energy balance. 

 The water condensed in the dehumidifier is assumed to leave at a temperature which is 

the average of the humid air temperatures at inlet and outlet of the dehumidifier. 

The properties of moist air and liquid water are obtained from Engineering Equation Solver 

(EES) [10]. Dry air properties are evaluated using the ideal gas formulations presented by 

Lemmon [11]. Moist air properties are evaluated using the formulations presented by Hyland and 

Wexler [12], which are in close agreement with the data presented in ASHRAE Fundamentals 

[13]. EES calculates water properties using the IAPWS (International Association for Properties 

of Water and Steam) 1995 Formulation [14]. 

 

2.1. Governing equations 

 

The equations governing a simple closed-air water-heated cycle are noted below. The 

nomenclature used is shown in Fig. 1. 

 

Humidifier: 
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Dehumidifier: 
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These equations cannot be solved as there are two extra unknowns compared to the number of 

equations. Component effectivenesses are defined to close the set of equations. 

 

2.2. Component effectiveness 

 

An energy effectiveness (analogous to the effectiveness defined in heat exchanger design) is 

defined here. This definition is based on the maximum thermodynamic performance that can be 

achieved in an adiabatic heat and mass exchanger. Figure 2 illustrates the second law limitations 

imposed on a counterow cooling tower. In the figure, ‘wb, 1’ is the wet bulb point of the air at 

the inlet to the humidifier and ‘a, 2’ is the exit air state. The air is assumed to be saturated at the 

inlet and hence, Twb,1 = Ta,1. The saturation line connecting the point ‘wb, 1’ to ‘a, 2’ represents 

one possible process path for the humidification process.  

The maximum dry bulb temperature that can be achieved by the saturated air at the exit 

of the humidifier is the water inlet temperature (indicated by point `a,3'). From Fig. 2, we see that 

the maximum enthalpy change possible ( maxH ) for saturated air entering the humidifier occurs 

if the air can be brought to saturation at the water inlet temperature. The required energy is 

drawn from the water stream, which may or may not have the capacity rate ( wp,wcm ) necessary to 
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supply that amount of energy within the limits imposed by the air and water inlet temperatures. If 

the water stream lacks sufficient capacity, the maximum enthalpy change ( maxH ) will be that 

which cools the water to the air inlet temperature. In this case the outlet air will be cooler than 

the water inlet temperature, and it may or may not be saturated. 

Two parameters are required to fix the exit state of the air. In this analysis we fix the 

enthalpy and the relative humidity. The enthalpy is fixed indirectly by setting the effectiveness of 

the humidifier which is defined as the ratio of actual enthalpy change of either stream ( H ) to 

maximum possible enthalpy change ( maxH ). 

                                                           (9)                                 
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In addition to defining the effectiveness, we need to fix the exit relative humidity to fully specify 

the cooling tower performance. For any given case, a particular range of exit relative humidities 

are possible (corresponding to points from ‘a, 2’ to ‘a', 2' shown in Fig. 2). Hence, the relative 

humidity is treated as a variable in this study. 

 

2.3. Solution technique 

 

The equations were solved using the commercial software, Engineering Equation Solver (EES) 

which uses accurate equations to model the properties of moist air and water. EES is a numerical 

solver, and it uses an iterative procedure to solve the equations. The convergence of the 

numerical solution is checked by using the following two variables: (1) `Relative equation 

residual' - the difference between left-hand and right-hand sides of an equation divided by the 

magnitude of the left-hand side of the equation; and (2) `Change in variables' – the change in the 

value of the variables within an iteration. The calculations converge if the relative equation 

residuals is lesser than 10-
6
 or if change in variables is less than 10

-9
. There are several 

publications which have previously used EES for thermodynamic analysis [15, 16, 17, 18]. 

 The code written in EES was checked for correctness against various limiting cases. For 

example, when h = d = 0 the GOR was found to 0 for all values of top and bottom temperatures. 

When h = 1, the minimum stream-to-stream terminal (at exit or inlet) temperature difference in 
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the humidifier was identically equal to zero for all values of top and bottom temperatures. 

Several other simple cases where checked. Also, calculations were repeated several times to 

check for reproducibility. 

 

3. Performance and operating parameters 

 

As a first step for understanding the HDH cycles the following performance parameters are 

defined. 

 

1. Gained-Output-Ratio (GOR): is the ratio of the latent heat of evaporation of the water 

produced to the heat input to the cycle. This parameter is, essentially, the effectiveness of 

water production and an index of the amount of the heat recovery effected in the system. 

                                                           (10)                                       
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Latent heat is calculated with the operating pressure assumed as saturation pressure. 

2. Top temperature: In HDH systems, either water or air is heated (for example, in a solar 

collector). The top temperature of the cycle is the temperature of the fluid being heated at 

the exit of the heater. 

3. Bottom temperature: The feedwater to the dehumidifier enters the cycle at the bottom 

temperature of the cycle. 

4. Terminal temperature difference (TTD): is the stream-to-stream temperature difference at 

either end of the heat exchanger (humidifier /dehumidifier)[19]. 

5. Pinch point temperature difference (P): is the minimum local stream-to-stream 

temperature difference at any point within the heat exchanger and is lower than both the 

terminal temperature differences [19]. In some cases, however, the pinch can be equal to 

one of the terminal temperature differences. 

6. Modified heat capacity ratio (HCR): For heat and mass exchange devices like the 

humidifier and the dehumidifier, we had previously [20] defined a parameter called the 

modified heat capacity ratio. The modified heat capacity ratio is the ratio of maximum 
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possible enthalpy change of the cold stream to the maximum possible enthalpy change of 

the hot stream. For the humidifier, 

                                                      (11)                                     HCR
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We had also shown that [20] based on the value of HCR, the component irreversibilities 

can be minimized for a given value of effectiveness and fixed inlet conditions. 

 

4. Basic cycles 

 

In this section, various cycle configurations have been modeled and a parametric study was 

performed to understand the dependence of various parameters on the cycle. These 

configurations include CAOW water-heated, CWOA water-heated and CAOW air-heated cycles. 

The parameters studied include top and bottom temperatures of the cycle, mass ow rate of the air 

and water streams, the humidifier and dehumidifier effectivenesses and the operating pressure. 

The performance of the cycles depends on the mass flow rate ratio (ratio of mass flow rate of 

seawater at the inlet of the humidifier to the mass flow rate of dry air through the humidifier), 

rather than on individual mass ow rates. Hence, in this and all the preceding sections the mass 

flow rate ratio is treated as a variable. This was also noted by other investigators [8, 21, 22]. 

 

4.1. CAOW with water heating 

One of the most commonly studied HDH cycles is the closed-air open-water water-heated 

(CAOW) cycle. A comprehensive study of parameters which affect the performance of this cycle 

has not been reported in literature. Such a study will help to understand the ways by which the 

performance of this basic cycle can be improved and hence, is reported below. 

 

Effect of relative humidity of the air entering and exiting the humidifier (a,1, a,2). The 

humidifier and dehumidifier can readily be designed such that the relative humidity of air at their 

exit is one. Hence, in this paper the exit air from these components is considered as saturated. 

However, the exit relative humidity is indicative of the performance of the humidifier and the 
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dehumidifier and hence, understanding how a variation of these parameters change the 

performance of the system is important.  

Figure 3 illustrates the effect that relative humidity of air at the humidifier inlet and exit 

can have on the performance of the cycle (GOR). For this particular case, the top (Tw,2) and 

bottom temperatures (Tw,0) were fixed at 80°C and 35°C respectively. Humidifier and 

dehumidifier effectivenesses (h, d) were fixed at 90%. Mass ow rate ratio was fixed at 5. It can 

be observed that for a variation of a,2 from 100 to 70% the performance of the system (GOR) 

reduces by roughly 3%, and for the same change in a,2 the effect is roughly 34%. This result 

suggests that the relative humidity of the air at the inlet of the humidifier has a much larger effect. 

These trends were found to be consistent for all values of mass ow rate ratios, temperatures and 

component effectivenesses. This, in turn, suggests that the dehumidifier performance will have a 

larger impact on the cycle performance. This issue is further investigated in the following 

paragraphs.  

Effect of component effectiveness (h, d). Figure 4(a) and 4(b) illustrate the variation of 

performance of the cycle at various values of component effectivenesses. In Fig. 4(a), the top 

temperature is fixed at 80°C, the bottom temperature is fixed at 30°C and the dehumidifier 

effectiveness is fixed at 80%. The mass ow rate ratio was varied from 1 to 6. It is important to 

observe that there exists an optimal value of mass ow rate ratio at which the GOR peaks.  It can 

also be observed that the increase in performance is fairly linear with increasing humidifier 

effectiveness, h.  In Fig. 4(b), the top temperature is fixed at 80°C, bottom temperature is fixed 

at 30°C, humidifier effectiveness is fixed at 80%. The cycle performance changes more 

dramatically for higher values of dehumidifier effectiveness. These trends are consistent for 

various values of top and bottom temperatures. Hence, a higher dehumidifier effectiveness is 

more valuable than a higher humidifier effectiveness for the performance (GOR) of the cycle.  

In the previous discussion, we have observed that the dehumidifier exit air relative 

humidity (a,1) is more important than the humidifier exit air relative humidity (a,2). Hence, 

based on these results, we can say that for a water-heated cycle the performance of the 

dehumidifier is more important than the performance of the humidifier. 

 

Effect of top temperature (Tw,2). Figure 5 illustrates the effect of the top temperature on the 

cycle performance (GOR). For this particular case, the bottom temperature (Tw,0) was fixed at 
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35°C and humidifier and dehumidifier effectivenesses were fixed at 92%. Top temperature (Tw,2) 

was varied from 50°C to 90°C. The optimal value of mass ow rate ratio increases with an 

increase in top temperature. Depending on the humidifier and dehumidifier effectiveness itself 

this trend changes. At lower component effectivenesses, the top temperature has no or little 

effect on the cycle performance. This result is counter-intuitive. However, it can be explained 

using a new parameter called the modified heat capacity ratio. In a previous publication [20], we 

had defined modified heat capacity ratio (HCR) as the ratio of maximum possible enthalpy 

change in the cold stream to the maximum possible enthalpy change in the hot stream. We had 

also described how the entropy generation in a heat and mass exchange device is minimized for a 

given effectiveness when HCR=1 (`balanced' condition). We are going to use this understanding 

here to explain the trends obtained at various top temperatures. 

Figures 6(a) and 6(b) show the variation of GOR with the heat capacity ratio of 

humidifier (HCRh) and the dehumidifier (HCRd) respectively. At the given inlet conditions the 

humidifier and dehumidifier are not balanced at the same point (same mass flow rate ratio).  

Hence the optimum GOR is not at HCR =1 for both components. Rather, it can be seen that 

GOR maximizes at HCRh > 1 and HCRd = 1. The maximum occurs at a balanced condition for 

the dehumidifier which, as we have shown in the preceding paragraphs is the more important 

component. Further, it can be noticed that the degree of balancing of the humidifier at the 

optimum GOR condition reduces (HCRh moves farther away from 1) as the top temperature 

increases. Hence, the irreversibility of the humidifier (and the total irreversibility of the system) 

increases with increase in top temperature. A system with higher total irreversibility has a lower 

GOR [23]. This explains the decrease in GOR with top temperature.  Also, as the top 

temperature increases the dehumidifier is balanced at higher mass flow ratio and hence the 

optimum value of GOR occurs at higher mass flow ratios. 

 

Effect of bottom temperature (Tw,0). The bottom temperature of the cycle (Tw,0) is fixed by 

the seawater temperature at the location where the water is drawn. Figure 7 illustrates a case with 

top temperature of 80°C and component effectivenesses of 92%. A higher bottom temperature of 

the cycle results in a higher value of GOR as illustrated in the figure. This result can again be 

understood by plotting HCR of humidifier and dehumidifier versus the GOR of the system    

(Figs. 8(a) and 8(b)). The degree of balancing of the humidifier at the optimum condition for 
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GOR decreases with decrease in bottom temperature. Hence, the irreversibilities in the 

humidifier (and the total irreversibility of the system) increases with decreasing bottom 

temperature and GOR declines. 

From the discussions in this subsection we have observed that the performance of the 

cycle (GOR) is a function of the following. 

 

(12)                  HCRHCRGOR ),,T,T,,,,(f 1,a2,a0,w2,wdhdh   

                         

The values of GOR reported in this paper for the CAOW water-heated cycle is within 20% of the 

experimental value obtained by Nawayseh [9]. In section 5, we attempt to use the ideas 

developed thus far to improve the cycle performance. 

 

4.2. CAOW with air heating 

 

A simple [24, 25, 26, 27] air-heated cycle is one in which air is heated, humidified, and 

dehumidified. Current simulations have found that the GOR for this cycle is very low (GOR<1, 

only slightly better than a solar still). It is important to understand the reasons for this. The air in 

this cycle is heated and immediately sent to a humidifier where it is saturated. The air also gets 

cooled during the humidification process since it is at a higher temperature than the water stream. 

Thus, heat is lost to the water stream in the humidifier. In the water-heated cycle, the air stream 

is heated in the humidifier. This further facilitates heat recovery in the dehumidifier, which is 

absent in an air heated system. Hence, the performance is much lower in an air-heated system. 

To improve the performance of air-heated systems, Chafik [24, 28] proposed a multi-

stage cycle. A two stage cycle is illustrated using a psychometric chart in Fig. 9(a). The air in 

this cycle is heated and sent to a humidifier where it is saturated. It is then further heated and 

humidified again. The idea behind this scheme was to increase the exit humidity of the air so that 

water production can be increased. Chafik was able to increase the exit humidity from 4.5% (by 

weight) for a single stage system to 9.3% for a 4 stage system. We reproduce this result for the 

same cycle under similar operating conditions. However, we also observed that the GOR of the 

cycle rises by only 9% (Fig. 9(b)). This is because the increased water production comes at the 
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cost of increased energy input. This, in turn, is because the multi-staging does not improve the 

heat recovery in the humidification process. Chafik reported very high cost of water production 

of the range of 15-50 Euro/m3
 due in part to the large area of solar collectors required for this low 

GOR system. 

 

4.3. CWOA with water heating 

 

Another cycle commonly treated in the literature is the closed-water open-air water-heated cycle 

[3, 4, 5]. Because air is not saturated, as in a closed air cycle, the wet bulb temperature is much 

lower and hence the water in the humidifier can be cooled to a much lower temperature than in 

the closed air cycle. Thus, one might expect that the humidifier effectiveness will influence the 

cycle performance non-linearly, unlike in the closed air cycle.  

Figure 10(a) shows the variation of cycle performance for various values of humidifier 

effectiveness. This figure is plotted for a top temperature of 80°C, bottom temperature of 30°C 

and D=80%. For higher values of H (90% & 100%), the Second Law of Thermodynamics is 

violated and hence, the performance at those points are not plotted. Unlike in heat exchangers 

(with no phase change or mass transfer) where the Second Law is not violated if < 1, the pinch 

point temperature difference in the humidifier and the dehumidifier occurs at a position between 

the two ends of the heat exchanger. As a result even when < 1 (minimum terminal temperature 

difference TTDmin > 0) the Second Law can be violated ( 0  S gen 
 ) in the humidifier and the 

dehumidifier.  

The variation of GOR with humidifier effectiveness is linear, unlike our expectation. 

Figure 10(b) confirms that the variation of performance of the cycle with dehumidifier 

effectiveness is non-linear, as in the closed air cycle. Hence, the thermodynamic design of this 

cycle is similar to that of a closed-air water heated cycle. 
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5. Improved cycles 

 

Several important observations made in the previous section can be leveraged to modify the 

basic cycles in literature to improve the performance of these cycles. In the current section, such 

an attempt is made and several novel cycles which have improved performance are identified. 

 

5.1. High efficiency, air heated cycle 

 

In the previous section we noted that the air heated cycle is inefficient. Yet, the air heated cycle 

is of practical significance as a solar air heater itself is expected to be more simple (and hence, 

more economical) than a solar water heater [29]. All the studies in literature consider cycles that 

heat the air before the humidifier (in single or multistage), which causes heat recovery to be 

reduced since the air is cooled in the humidifier. If the heater is placed after the humidifier, 

saturated air from the humidifier is heated and sent to the dehumidifier (Fig. 11(a)). An enthalpy-

temperature diagram of the proposed cycle is shown in Fig. 11(b). 

This cycle has following advantages. It operates the air heater at a higher temperature 

level and it can be observed from the properties of moist air that at a higher temperature level it 

is easier to raise the temperature of saturated air than at a lower temperature level. So a given top 

temperature can be attained by a smaller heat input. Also, the heat is recovered in the humidifier 

since the water stream is heating the air stream (and humidifying it) in the humidifier. Hence, the 

overall heat recovery is much improved in this cycle. This cycle can be realized in two ways, 

closed air or closed water. We describe the closed air cycle below.  

Figure 12 shows the performance of the proposed system. This figure is plotted for a top 

temperature of 80°C, bottom temperature of 30°C and d=90%. As can be observed from the 

figure, the proposed cycle is many times more efficient (300%) than the air heated cycle. The 

performance of this system is higher than the water heated cycle also (by 25%). From Fig. 12 we 

can also observe that the variation of performance with humidifier effectiveness is non-linear for 

the proposed cycle, unlike the water heated cycles. GOR is plotted only for those mass ow rate 

ratios in which the cycle satisfies second law requirements.  
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The performance curve of the cycle plotted in Fig. 12 can be better explained using the 

modified heat capacity ratio. Figures 13(a) and 13(b) show the variation of GOR with modified 

heat capacity ratio of dehumidifier and humidifier respectively. The global maximum in the 

GOR occurs at HCRd = 1 and HCRh = 5.35. There is a small kink in the curve at HCRh = 1. The 

global maximum is not realized as second law is violated at that point. This is because for the 

given inlet conditions we are not able to completely balance the dehumidifier without violating 

the Second Law. Also, from these figures, it is important to note that the balancing of the 

dehumidifier is more important than the balancing of the humidifier to the modified air-heated 

cycle. 

 

5.2. Multi-extraction air-heated cycle 

 

The performance of the air-heated system can be increased if we are able to bring the HCR 

values of both of the components closer to one. This can be achieved by manipulating the mass 

flow rate of water or air. We choose to do so with air as it is easier to extract and re-circulate air 

without changing the components too much. More specifically, we extract air at various points 

from the humidifier and inject it at corresponding points in the dehumidifier (Fig. 14). The idea 

behind this is to breakup the humidifier and dehumidifier into a number of smaller parts with 

different values of mass flow rate ratio. Ideally, the mass ow rate ratio should be selected such 

that each of these smaller parts should be operating very close to a HCR of 1 (so that the entropy 

production in the humidifier and the dehumidifier is minimized [20]). Müller-Holst [6] 

implemented a similar concept in his HDH system but with the objective of balancing stream-to-

stream temperature difference. However, the minimum entropy generation is at a point where 

HCR =1 which is not the same as the situation in which temperature differences are balanced. 

The optimization has been performed by looking at inlet conditions to the humidifier and 

dehumidifier in various planes in the cycle diagram. These are represented as planes 0 to 5 in the 

Fig. 14. It is not possible to attain balanced condition for the humidifier and the dehumidifier 

without changing the inlet conditions as we have observed in previous examples (Fig. 13(a), 

13(b)). This is achieved by splitting the humidifier and dehumidifier into many parts such that 

each part has the required inlet conditions and required mass ow ratio to achieve the balanced 
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condition. We have given a detailed example of multi-extraction cycle in a previous publication 

[20]. 

 

5.3. Sub-atmospheric pressure, air heated cycle 

 

We had previously observed [1] that all the HDH systems in literature operate at atmospheric 

pressures only. The humidity ratios are much higher at pressures lower than atmospheric 

pressure. For example, at a dry bulb temperature of 60°C and a pressure of 50 kPa, the saturation 

humidity ratio is roughly 150% higher than at atmospheric pressure. Hence, it is logical to design 

an air heated cycle (section 5.1) to operate at sub-atmospheric pressures [30]. Figure 15 shows 

the variation of performance of this cycle with change in system pressure. This data is for a top 

temperature of 67°C, a bottom temperature of 35°C, h=80%, d=80% and optimized values of 

mass flow rate ratio.  

The GOR of the cycle at a pressure of 30 kPa is 4.5. This is a 30% increase in 

performance. However, we have observed that the performance increase comes at the expense of 

a lower humidifier TTD and a greater heat transfer area. Also, from the many designs we have 

examined for this cycle, we have observed that the exit humidity from the dehumidifier is higher 

than in the atmospheric pressure case. Hence, the cycle has a possible scope for improvement. 

 

5.4. Varied pressure cycle 

 

To get better performance out of the HDH cycle, the exit humidity from the dehumidifier should 

be minimized. The novel cycles explained in the previous sub-sections can be combined to form 

a new cycle which will operate the humidification process under sub-atmospheric conditions and 

the dehumidification at a higher pressure than the humidification process. The energy for the 

cycle is input to the air stream after the humidification, in the form of air compression. The 

compressed air is then dehumidified. The air after dehumidification can be expanded to a lower 

pressure and a part of the compressor work may be then supplied by the expander. This will 

maximize exit humidity from humidifier and minimize exit humidity from dehumidifier. Figure 
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16(a) shows an illustration of this system [31]. This system will combine the benefits of the 

systems discussed in Sections 5.1 and 5.3. To quantify this, an analysis was carried out. 

Figure 17(a) shows the effect of humidifier pressure and pressure ratio on the system 

performance. This graph is plotted for a bottom temperature of 30°C, H=90%, 

D=90%, °C=90% and E=90%. Here GOR is defined as the ratio of the product of mass flow of 

water produced and latent heat to the net work input to the system. 

(13)                                       GOR
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As expected, lower humidifier pressures give a higher performance. This is because the 

humidity ratios are higher at lower pressures. Moreover, at lower pressure ratios we have a 

higher performance. TTD becomes smaller at lower pressure ratios. Hence, the higher 

performance at lower pressure ratios is at the expense of a larger heat exchanger area.  

We have explored the possibility of recovering part of the work as an expansion at the 

exit of the humidifier. This expansion cools the inlet air to the humidifier. The lower temperature 

to the humidifier improves the performance. Figure 17(b) shows the effect of work recovery for a 

two-pressure system operating at a humidifier pressure of 40 kPa. It can be seen that an efficient 

work recovery device will reduce the energy demand by 10-15%. An example of such a system 

with work recovery is also shown in the figure. This system has a GOR of 12.2 for reasonable 

values of TTD (5°C for the non-contact heat exchanger and 3°C for the packed bed). The higher 

GOR results in part from the use of mechanical work, rather than heat, as the cycle's energy 

source. 

 

5.5. Thermal vapor compression in HDH 

 

From the analysis in the previous section, we can observe that the pressure driven HDH system 

has very high performance comparable with conventional desalination systems. We should, 

however, keep in mind that these high values of GOR are based on mechanical or electrical 

energy input to the compressor. An alternative design of the varied pressure system uses a 

thermocompressor in place of the mechanical compressor. Figure 18 illustrates a possible 

configuration of this cycle in which a air heater and a steam ejector are used to provide energy to 
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the varied pressure cycle. It was found that for a design of the steam ejector, the mass of steam 

required per mass of fresh water produced was about 0.1 and for every 100 kg of air circulated 

only about 6 kg of steam was required to operate the thermocompressor. This steam could be 

supplied from an associated power plant as is typical in other coproduction systems for water and 

electricity. A GOR of 7.7 is achieved for this case. GOR is defined, like in conventional HDH 

systems, as the ratio of the heat of evaporation of the distillate produced to the heat input to the 

system. 

                                                 (14)                                       GOR
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where,  Qin
 is the heat input in the heater and  Qsteam

 is the heat of the steam entering the system. 

                                                (15)                             steamsteam

.
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Further investigation into the design of this system is currently in progress. It should be noted 

that these systems are not thermally balanced. A balanced system would have a much higher 

performance value. It is possible to balance these systems using the concepts explained earlier 

[20]. 

 

6. Comparison of cycles 

 

The various HDH cycles analyzed in this paper are compared in Table 1. The comparison is 

based on the gained-output-ratio. The bottom temperature for all the cycles is maintained at 35°C. 

The top temperature for all the cycles is maintained at 90°C. These cycles are designed for 

humidifier TTDmin of >2.8°C and dehumidifier TTDmin of >4°C. Using a simple thermodynamic 

analysis of a reversible system the maximum possible GOR was calculated as 122 (See 

appendix).  

Some very important observations can be made from Table 1. The commonly used air-

heated cycles are much less efficient than the water-heated cycles (GOR is roughly 2.5 times 

larger for the water-heated case). Multi-staging for air-heated cycles does not improve the 

performance greatly. However, the proposed modification to the air-heated cycle (section 5.1) 
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can make it better than the water heated cycle (GOR is 25% larger than the water-heated cycle 

and >300% better than the common air-heated cycles). 

Müller-Holst [6] quoted a high value of GOR (3 to 4.5) for a system which has balanced 

stream-to-stream temperature difference in the components. We also observed similar values of 

GOR using the concept of balancing. Balancing the components in a cycle for heat capacity ratio 

close to one improves the performance greatly. For a multi-extraction air heated cycle (explained 

in Section 5.2), the GOR can reach a value of 4.5. Vacuum operation improves the performance 

of the air-heated cycle further, but at the expense of larger heat and mass transfer area. An air-

heated HDH cycle which is balanced and is operating under sub-atmospheric conditions is a very 

efficient thermally-driven HDH system. Varied pressure HDH if driven by thermo-compression 

can be more efficient (GOR>7) than the air-heated system. Performance will depend on our 

ability to design an efficient ejector and also on the availability of steam. 

 

7. Conclusions 

 

A comprehensive study to understand and optimize the performance of the HDH cycle has been 

carried out. The following significant conclusions are arrived at from this study: 

1. The performance of a basic water-heated cycle depends on: (a) the modified heat capacity 

ratio in the humidifier and the dehumidifier; (b) the humidifier and dehumidifier 

effectivenesses; (c) top and bottom temperatures; and (d) relative humidity of air at the 

exit of the humidifier and the dehumidifier. 

2. The air-heated cycles previously reported in the literature are inefficient. A novel air-

heated cycle has been proposed in this paper. This new cycle is more efficient than even 

the water-heated cycle. 

3. Closed air and closed water cycles have similar thermodynamic characteristics and hence 

similar performance. 

4. The dehumidifier is more vital than the humidifier to the performance of a conventional 

water-heated cycle. However, for the novel air-heated cycle proposed in this paper both 

the humidifier and dehumidifier effectivenesses have similar impact on the cycle 

performance. 
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5. Balancing the humidifier and the dehumidifier to attain HCR close to 1 will improve 

performance greatly. In all of the studied cycles, balancing the dehumidifier was found to 

yield a higher performance than balancing the humidifier. 

6. The novel concept of operating HDH under vacuum is proposed in this paper. Vacuum 

operation increases performance but at the expense of heat exchanger size. 

7. Varied pressure systems which have better performance than single pressure systems 

have also been proposed in this paper. These systems can be mechanically or thermally 

driven. They have high performance compared to all conventional HDH systems. 
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Table 1: Comparison of HDH cycles 

CYCLE GOR 

CAOW Air heated cycle 0.78 

CAOW Multi-stage Air heated cycle (four stage) 0.85 

CAOW Water heated cycle 2.5 

CWOA Water heated cycle 2.6 

CAOW Modified air heating 3.5 

CWOA Modified air heating 3.5 

Reduced pressure cycle (35 kPa) 4.5 

Multi-extraction air heated cycle >4.5 

Thermo-compression cycle 7.6 

Varied pressure cycle (work driven) 15.6 

Ideal (reversible) HDH cycle 122 
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Figure 1: Water-heated CAOW HDH cycle 
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Figure 2: Psychometric chart showing possible humidification paths and exit states; counter flow 

is assumed; C; C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



26 

 

 
Figure 3: Effect of humidifier and dehumidfier inlet air relative humidity on water-heated CAOW 

cycle performance.  kg/s  kg/s C C . 
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(a) 

 
(b) 

Figure 4: Effect of component effectiveness on GOR for a water-heated CAOW cycle: (a) Effect 

of humidifier effectiveness. C; C; ; (b) Effect of dehumidifier 

effectiveness. C; C . 
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Figure 5: Effect of top temperature, , on water-heated CAOW cycle performance. 

C . 
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(a) 

 

 
(b) 

 

Figure 6: Effect of top temperature plotted on GOR versus HCR charts for a water-heated 

CAOW cycle. (a) GOR v . C ; (b) GOR v . 

C . 

 



30 

 

 
Figure 7: Effect of bottom temperature,  on water-heated CAOW cycle performance. 

C . 
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   (a) 

 
(b) 

 
Figure 8: Effect of bottom temperature plotted on GOR versus HCR charts for a water-

heated CAOW cycle. (a) GOR v . C ; (b) GOR v . 

C . 
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(a) 

 
(b) 

 
Figure 9: Multi-stage CAOW air-heated cycle. (a) Representation in psychrometric 

coordinates; (b) Effect of number of stages on performance. 
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(a) 

 
(b) 

 

Figure 10: Effect of component effectiveness on GOR for a CWOA water-heated cycle. 

(a) Effect of humidifier effectiveness. 

C C C ; 

(b) Effect of dehumidifier effectiveness. 

C C C . 
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(a) 

 

 

 
(b) 

 

Figure 11: Modified air-heated cycle. (a)Schematic diagram; (b) Psychometric 

representation: humidification (1-2) followed by heating (2-3) and subsequent dehumidification 

(3-1). 
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Figure 12: Effect of humidifier effectiveness on CAOW modified air-heated cycle 

performance C C . 
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(a) 

 

 
(b) 

 
Figure 13: Effect of heat capacity ratio on CAOW modified air-heated cycle performance. 

(a) Effect of . C C ; (b) Effect of . 

C C . 
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Figure 14: Multi-extraction CAOW modified air-heated cycle. 
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Figure 15: Effect of system pressure on performance of CAOW modified air-heated 

cycle; C C . 
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(a) 

 

 
(b) 

 

 

Figure 16: Varied pressure cycle. (a) Schematic diagram; (b) Psychometric 

representation: humidification (1-2) followed by compression (2-3), subsequent dehumidification 

(3-4) and finally expansion (4-1). 
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(a) 

 

 
 

(b) 
Figure 17: Performance of a varied pressure cycle. (a) Effect of pressure ratio and 

humidifier pressure: C ; (b) Effect of work 

recovery: C . 
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Figure 18: Thermocompression driven HDH cycle 
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Appendix 

 
Calculation of Carnot GOR for HDH: 

 
The highest GOR achievable in a cycle of this type will be that for zero entropy production. 

We derive here the expression for this upper limit. Applying 1st and 2nd law to the system 

shown in Fig. 19, 

 

 

 

 

 
 

 

Figure 19: Schematic diagram for calculating Carnot GOR of HDH 
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  Using these equations, 
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The least heat of separation is for 0  Sgen 
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The following conditions are assumed for calculating the least heat and maximum theoretical 

GOR for HDH: 

 

1. For HDH the recovery ratio is typically <10%. Here for the sake of calculation it is taken 

as 10%. 

2. The inlet feed stream salinity is taken as 35,000 ppm and is approximated by a 0.62 

mol/kg NaCl solution. 

3. Pressure is 1 bar. 

4. Top and bottom temperatures are taken as 90°C and 30°C respectively. 

5. The calculation is performed for water production of 1 kg/s. 

6. The air stream enters and leaves at the same temperature and humidity. State 4 and 5 in 

Fig. 19 are the same.  T  T ina,outa,  and inout     . 

 

At these conditions, 

 

(23)                                                                                           

(22)                                             

-  

GOR

515.122

T

T
1

TSgngngn

h

h

o

ogen

.

1
1

.

3
3

.

2
2

.

fg



























 

                                                                               

 

 

 


