14,942 research outputs found
Internal stress wave measurements in solids subjected to lithotripter pulses
Semiconductor strain gauges were used to measure the internal strain along the axes of spherical and disk plaster specimens when subjected to lithotripter shock pulses. The pulses were produced by one of two lithotripters. The first source generates spherically diverging shock waves of peak pressure approximately 1 MPa at the surface of the specimen. For this source, the incident and first reflected pressure (P) waves in both sphere and disk specimens were identified. In addition, waves reflected by the disk circumference were found to contribute significantly to the strain fields along the disk axis. Experimental results compared favorably to a ray theory analysis of a spherically diverging shock wave striking either concretion. For the sphere, pressure contours for the incident P wave and caustic lines were determined theoretically for an incident spherical shock wave. These caustic lines indicate the location of the highest stresses within the sphere and therefore the areas where damage may occur. Results were also presented for a second source that uses an ellipsoidal reflector to generate a 30-MPa focused shock wave, more closely approximating the wave fields of a clinical extracorporeal lithotripter
Calculation of two-dimensional turbulent flow fields
Navier-Stokes equation solutions for two- dimensional turbulent flow fields of compressible viscous flui
Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results
The OTV configurations, operations and requirements planned for the period from the 1980's to the 1990's were reviewed and a propellant transfer experiment was designed that would support the needs of these advanced OTV operational concepts. An overall integrated propellant management technology plan for all NASA centers was developed. The preliminary cost estimate (for planning purposes only) is 31.8 M is for shuttle user costs
Deep subcutaneous application of poly-L-lactic acid as a filler for facial lipoatrophy in HIV-infected patients
Introduction: Facial lipoatrophy is a crucial problem of HIV-infected patients undergoing highly active antiretroviral therapy (HAART). Poly-L-lactic acid (PLA), provided as New-Fill(R)/Sculptra(TM), is known as one possible treatment option. In 2004 PLA was approved by the FDA as Sculptra(TM) for the treatment of lipoatrophy of the face in HIV-infected patients. While the first trials demonstrated relevant efficacy, this was to some extent linked to unwanted effects. As the depth of injection was considered relevant in this context, the application modalities of the preparation were changed. The preparation was to be injected more deeply into subcutaneous tissue, after increased dilution. Material and Methods: To test this approach we performed a pilot study following the new recommendations in 14 patients. Results: While the efficacy turned out to be about the same, tolerability was markedly improved. The increase in facial dermal thickness was particularly obvious in those patients who had suffered from lipoatrophy for a comparatively small period of time. Conclusion: With the new recommendations to dilute PLA powder and to inject it into the deeper subcutaneous tissue nodule formation is a minor problem. However, good treatment results can only be achieved if lipoatrophy is not too intense; treatment intervals should be about 2 - 3 weeks. Copyright (C) 2005 S. Karger AG, Basel
Quantum Many-Body Dynamics of Dark Solitons in Optical Lattices
We present a fully quantum many-body treatment of dark solitons formed by
ultracold bosonic atoms in one-dimensional optical lattices. Using
time-evolving block decimation to simulate the single-band Bose-Hubbard
Hamiltonian, we consider the quantum dynamics of density and phase engineered
dark solitons as well as the quantum evolution of mean-field dark solitons
injected into the quantum model. The former approach directly models how one
may create quantum entangled dark solitons in experiment. While we have already
presented results regarding the latter approach elsewhere [Phys. Rev. Lett.
{\bf 103}, 140403 (2009)], we expand upon those results in this work. In both
cases, quantum fluctuations cause the dark soliton to fill in and may induce an
inelasticity in soliton-soliton collisions. Comparisons are made to the
Bogoliubov theory which predicts depletion into an anomalous mode that fills in
the soliton. Our many-body treatment allows us to go beyond the Bogoliubov
approximation and calculate explicitly the dynamics of the system's natural
orbitals.Comment: 14 pages, 11 figures -- v3 has only minor changes from v2 -- this is
the print versio
Strong correlation effects in single-wall carbon nanotubes
We present an overview of strong correlations in single-wall carbon
nanotubes, and an introduction to the techniques used to study them
theoretically. We concentrate on zigzag nanotubes, although universality
dictates that much ofthe theory can also be applied to armchair or chiral
nanotubes. We show how interaction effects lead to exotic low energy properties
and discuss future directions for studies on correlation effects in nanotubes
Response of parametrically-driven nonlinear coupled oscillators with application to micro- and nanomechanical resonator arrays
The response of a coupled array of nonlinear oscillators to parametric
excitation is calculated in the weak nonlinear limit using secular perturbation
theory. Exact results for small arrays of oscillators are used to guide the
analysis of the numerical integration of the model equations of motion for
large arrays. The results provide a qualitative explanation for a recent
experiment [Buks and Roukes, cond-mat/0008211, to appear in J. MEMS (2002)]
involving a parametrically-excited micromechanical resonator array. Future
experiments are suggested that could provide quantitative tests of the
theoretical predictions.Comment: 27 pages (in preprint format), 8 figure
The unusual thickness dependence of superconductivity in -MoGe thin films
Thin films of -MoGe show progressively reduced 's as the
thickness is decreased below 30 nm and the sheet resistance exceeds 100
. We have performed far-infrared transmission and reflection
measurements for a set of -MoGe films to characterize this weakened
superconducting state. Our results show the presence of an energy gap with
ratio in all films studied, slightly higher
than the BCS value, even though the transition temperatures decrease
significantly as film thickness is reduced. The material properties follow
BCS-Eliashberg theory with a large residual scattering rate except that the
coherence peak seen in the optical scattering rate is found to be strongly
smeared out in the thinner superconducting samples. A peak in the optical mass
renormalization at is predicted and observed for the first time
Signatures of superconducting gap inhomogeneities in optical properties
Scanning tunneling spectroscopy applied to the high- cuprates has
revealed significant spatial inhomogeneity on the nanoscale. Regions on the
order of a coherence length in size show variations of the magnitude of the
superconducting gap of order or more. An important unresolved question
is whether or not these variations are also present in the bulk, and how they
influence superconducting properties. As many theories and data analyses for
high- superconductivity assume spatial homogeneity of the gap magnitude,
this is a pressing question. We consider the far-infrared optical conductivity
and evaluate, within an effective medium approximation, what signatures of
spatial variations in gap magnitude are present in various optical quantities.
In addition to the case of d-wave superconductivity, relevant to the high-
cuprates, we have also considered s-wave gap symmetry in order to provide
expected signatures of inhomogeneities for superconductors in general. While
signatures of gap inhomogeneities can be strongly manifested in s-wave
superconductors, we find that the far-infrared optical conductivity in d-wave
is robust against such inhomogeneity.Comment: 8 pages, 7 figure
- …