research

The unusual thickness dependence of superconductivity in α\alpha-MoGe thin films

Abstract

Thin films of α\alpha-MoGe show progressively reduced TcT_{c}'s as the thickness is decreased below 30 nm and the sheet resistance exceeds 100 Ω/□\Omega/\Box. We have performed far-infrared transmission and reflection measurements for a set of α\alpha-MoGe films to characterize this weakened superconducting state. Our results show the presence of an energy gap with ratio 2Δ0/kBTc=3.8±0.12\Delta_0/k_BT_{c} = 3.8 \pm 0.1 in all films studied, slightly higher than the BCS value, even though the transition temperatures decrease significantly as film thickness is reduced. The material properties follow BCS-Eliashberg theory with a large residual scattering rate except that the coherence peak seen in the optical scattering rate is found to be strongly smeared out in the thinner superconducting samples. A peak in the optical mass renormalization at 2Δ02\Delta_0 is predicted and observed for the first time

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020