77 research outputs found

    Relapse risk factors in anti-N-methyl-D-aspartate receptor encephalitis

    Get PDF
    Aim: To identify factors that may predict and affect the risk of relapse in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Method: This was a retrospective study of an Italian cohort of patients with paediatric (≤18y) onset anti-NMDAR encephalitis. Results: Of the 62 children included (39 females; median age at onset 9y 10mo, range 1y 2mo–18y; onset between 2005 and 2018), 21 per cent relapsed (median two total events per relapsing patient, range 2–4). Time to first relapse was median 31.5 months (range 7–89mo). Severity at first relapse was lower than onset (median modified Rankin Scale [mRS] 3, range 2–4, vs median mRS 5, range 3–5; admission to intensive care unit: 0/10 vs 3/10). At the survival analysis, the risk of relapsing was significantly lower in patients who received three or more different immune therapies at first disease event (hazard ratio 0.208, 95% confidence interval 0.046–0.941; p=0.042). Neurological outcome at follow-up did not differ significantly between patients with relapsing and monophasic disease (mRS 0–1 in 39/49 vs 12/13; p=0.431), although follow-up duration was significantly longer in relapsing (median 84mo, range 14–137mo) than in monophasic patients (median 32mo, range 4–108mo; p=0.002). Interpretation: Relapses may occur in about one-fifth of children with anti-NMDAR encephalitis, are generally milder than at onset, and may span over a long period, although they do not seem to be associated with severity in the acute phase or with outcome at follow-up. Aggressive immune therapy at onset may reduce risk of relapse. What this paper adds: Relapses of anti-N-methyl-D-aspartate receptor encephalitis may span over a long period. Relapses were not associated with severity in the acute phase or outcome at follow-up. Aggressive immune therapy at onset appears to decrease risk of relapse

    neuroimaging changes in menkes disease part 2

    Get PDF
    SUMMARY: This is the second part of a retrospective and review MR imaging study aiming to define the frequency rate, timing, imaging features, and evolution of gray matter changes in Menkes disease, a rare multisystem X-linked disorder of copper metabolism characterized by early, severe, and progressive neurologic involvement. According to our analysis, neurodegenerative changes and focal basal ganglia lesions already appear in the early phases of the disease. Subdural collections are less common than generally thought; however, their presence remains important because they might challenge the differential diagnosis with child abuse and might precipitate the clinical deterioration. Anecdotal findings in our large sample seem to provide interesting clues about the protean mechanisms of brain injury in this rare disease and further highlight the broad spectrum of MR imaging findings that might be expected while imaging a child with the suspicion of or a known diagnosis of Menkes disease

    neuroimaging changes in menkes disease part 1

    Get PDF
    SUMMARY: Menkes disease is a rare multisystem X-linked disorder of copper metabolism. Despite an early, severe, and progressive neurologic involvement, our knowledge of brain involvement remains unsatisfactory. The first part of this retrospective and review MR imaging study aims to define the frequency rate, timing, imaging features, and evolution of intracranial vascular and white matter changes. According to our analysis, striking but also poorly evolutive vascular abnormalities characterize the very early phases of disease. After the first months, myelination delay becomes evident, often in association with protean focal white matter lesions, some of which reveal an age-specific brain vulnerability. In later phases of the disease, concomitant progressive neurodegeneration might hinder the myelination progression. The currently enriched knowledge of neuroradiologic finding evolution provides valuable clues for early diagnosis, identifies possible MR imaging biomarkers of new treatment efficacy, and improves our comprehension of possible mechanisms of brain injury in Menkes disease

    Myoclonic status epilepticus and cerebellar hypoplasia associated with a novel variant in the GRIA3 gene

    Get PDF
    AMPA-type glutamate receptors (AMPARs) are postsynaptic ionotropic receptors which mediate fast excitatory currents. AMPARs have a heterotetrameric structure, variably composed by the four subunits GluA1-4 which are encoded by genes GRIA1-4. Increasing evidence support the role of pathogenic variants in GRIA1-4 genes as causative for syndromic intellectual disability (ID). We report an Italian pedigree where some male individuals share ID, seizures and facial dysmorphisms. The index subject was referred for severe ID, myoclonic seizures, cerebellar signs and short stature. Whole exome sequencing identified a novel variant in GRIA3, c.2360A > G, p.(Glu787Gly). The GRIA3 gene maps to chromosome Xq25 and the c.2360A > G variant was transmitted by his healthy mother. Subsequent analysis in the family showed a segregation pattern compatible with the causative role of this variant, further supported by preliminary functional insights. We provide a detailed description of the clinical evolution of the index subjects and stress the relevance of myoclonic seizures and cerebellar syndrome as cardinal features of his presentation

    Long-term outcome of epilepsy in patients with prader–willi syndrome

    Get PDF
    Prader-Willi syndrome is a multisystemic genetic disorder that can be associated with epilepsy. There is insufficient information concerning the clinical and electroencephalographic characteristics of epilepsy and the long-term outcome of these patients. The aim of this study is to describe seizure types, electroencephalographic patterns and long-term seizure outcome in Prader-Willi syndrome patients suffering from epilepsy. We retrospectively studied 38 patients with Prader-Willi syndrome and seizures. Results of neuroimaging studies were obtained for 35 individuals. We subdivided these patients into two groups: group A, 24 patients, without brain lesions; and group B, 11 patients, with brain abnormalities. All patients were re-evaluated after a period of at least 10 years. Twenty-one patients (55.2 %) were affected by generalized epilepsy and 17 patients (44.8 %) presented focal epilepsy. The most common seizure type was generalized tonic-clonic seizure. The mean age at seizure onset was 4.5 years (ranged from 1 month to 14 years). In the follow-up period, seizure freedom was achieved in 32 patients (84.2 %). Seizure freedom was associated with electroencephalographic normalization, while the six children presenting drug-resistant epilepsy showed persistence of electroencephalographic abnormalities. Group B patients showed a higher prevalence of drug-resistant epilepsy. Patients with Prader-Willi syndrome were frequently affected by generalized seizures. Most of the patients had a favorable evolution, although, patients with brain abnormalities presented a worse outcome, suggesting that the presence of these lesions can influence the response to antiepileptic therapy.Prader–Willi syndrome is a multisystemic genetic disorder that can be associated with epilepsy. There is insufficient information concerning the clinical and electroencephalographic characteristics of epilepsy and the long-term outcome of these patients. The aim of this study is to describe seizure types, electroencephalographic patterns and long-term seizure outcome in Prader–Willi syndrome patients suffering from epilepsy. We retrospectively studied 38 patients with Prader–Willi syndrome and seizures. Results of neuroimaging studies were obtained for 35 individuals. We subdivided these patients into two groups: group A, 24 patients, without brain lesions; and group B, 11 patients, with brain abnormalities. All patients were re-evaluated after a period of at least 10 years. Twenty-one patients (55.2 %) were affected by generalized epilepsy and 17 patients (44.8 %) presented focal epilepsy. The most common seizure type was generalized tonic– clonic seizure. The mean age at seizure onset was 4.5 years (ranged from 1 month to 14 years). In the follow-up period, seizure freedom was achieved in 32 patients (84.2 %). Seizure freedom was associated with electroencephalographic normalization, while the six children presenting drug-resistant epilepsy showed persistence of electroencephalographic abnormalities. Group B patients showed a higher prevalence of drug-resistant epilepsy. Patients with Prader–Willi syndrome were frequently affected by generalized seizures. Most of the patients had a favorable evolution, although, patients with brain abnormalities presented a worse outcome, suggesting that the presence of these lesions can influence the response to antiepileptic therapy

    Association of intronic variants of the KCNAB1 gene with lateral temporal epilepsy.

    Get PDF
    The KCNAB1 gene is a candidate susceptibility factor for lateral temporal epilepsy (LTE) because of its functional interaction with LGI1, the gene responsible for the autosomal dominant form of LTE. We investigated association between polymorphic variants across the KCNAB1 gene and LTE. The allele and genotype frequencies of 14 KCNAB1 intronic SNPs were determined in 142 Italian LTE patients and 104 healthy controls and statistically evaluated. Single SNP analysis revealed one SNP (rs992353) located near the 3'end of KCNAB1 slightly associated with LTE after multiple testing correction (odds ratio=2.25; 95% confidence interval 1.26-4.04; P=0.0058). Haplotype analysis revealed two haplotypes with frequencies higher in cases than in controls, and these differences were statistically significant after permutation tests (Psim=0.047 and 0.034). One of these haplotypes was shown to confer a high risk for the syndrome (odds ratio=12.24; 95% confidence interval 1.32-113.05) by logistic regression analysis. These results support KCNAB1 as a susceptibility gene for LTE, in agreement with previous studies showing that this gene may alter susceptibility to focal epilepsy

    Early Immunotherapy and Longer Corticosteroid Treatment Are Associated With Lower Risk of Relapsing Disease Course in Pediatric MOGAD

    Get PDF
    Background and Objectives We sought to identify early factors associated with relapse and outcome in paediatric-onset myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD). Methods In a multicenter retrospective cohort of pediatric MOGAD (≤18 years), onset features and treatment were compared in patients with monophasic vs relapsing disease (including cases with follow-up ≥12 months after onset or relapse at any time) and in patients with final Expanded Disability Status Scale (EDSS) 0 vs ≥1 at last follow-up (including cases with followup >3 months after last event or EDSS0 at any time). Multivariable logistic regression models were used to evaluate factors associated with relapsing disease course and EDSS ≥ 1 at final follow-up. Results Seventy-five children were included (median onset age 7 years; median 30 months of follow-up). Presentation with acute disseminated encephalomyelitis was more frequent in children aged 8 years or younger (66.7%, 28/42) than in older patients (30.3%, 10/33) (p = 0.002), whereas presentation with optic neuritis was more common in children older than 8 years (57.6%, 19/33) than in younger patients (21.4%, 9/42) (p = 0.001). 40.0% (26/65) of patients relapsed. Time to first relapse was longer in children aged 8 years or younger than in older patients (median 18 vs 4 months) (p = 0.013). Factors at first event independently associated with lower risk of relapsing disease course were immunotherapy <7 days from onset (6.7-fold reduced odds of relapsing course, OR 0.15, 95% CI 0.03–0.61, p = 0.009), corticosteroid treatment for ≥5 weeks (6.7-fold reduced odds of relapse, OR 0.15, 95% CI 0.03–0.80, p = 0.026), and abnormal optic nerves on onset MRI (12.5-fold reduced odds of relapse, OR 0.08, 95% CI 0.01–0.50, p = 0.007). 21.1% (15/71) had EDSS ≥ 1 at final follow-up. Patients with a relapsing course had a higher proportion of final EDSS ≥ 1 (37.5%, 9/24) than children with monophasic disease (12.8%, 5/39) (p = 0.022, univariate analysis). Each 1-point increment in worst EDSS at onset was independently associated with 6.7-fold increased odds of final EDSS ≥ 1 (OR 6.65, 95% CI 1.33–33.26, p = 0.021). Discussion At first attack of pediatric MOGAD, early immunotherapy, longer duration of corticosteroid treatment, and abnormal optic nerves on MRI seem associated with lower risk of relapse, whereas higher disease severity is associated with greater risk of final disability (EDSS ≥ 1)

    Trends in pediatric epilepsy surgery in Europe between 2008 and 2015: Country‐, center‐, and age‐specific variation

    Get PDF
    OBJECTIVE: To profile European trends in pediatric epilepsy surgery (<16 years of age) between 2008 and 2015. METHODS: We collected information on volumes and types of surgery, pathology, and seizure outcome from 20 recognized epilepsy surgery reference centers in 10 European countries. RESULTS: We analyzed retrospective aggregate data on 1859 operations. The proportion of surgeries significantly increased over time (P < .0001). Engel class I outcome was achieved in 69.3% of children, with no significant improvement between 2008 and 2015. The proportion of histopathological findings consistent with glial scars significantly increased between the ages of 7 and 16 years (P for trend = .0033), whereas that of the remaining pathologies did not vary across ages. A significant increase in unilobar extratemporal surgeries (P for trend = .0047) and a significant decrease in unilobar temporal surgeries (P for trend = .0030) were observed between 2008 and 2015. Conversely, the proportion of multilobar surgeries and unrevealing magnetic resonance imaging cases remained unchanged. Invasive investigations significantly increased, especially stereo‐electroencephalography. We found different trends comparing centers starting their activity in the 1990s to those whose programs were developed in the past decade. Multivariate analysis revealed a significant variability of the proportion of the different pathologies and surgical approaches across countries, centers, and age groups between 2008 and 2015. SIGNIFICANCE: Between 2008 and 2015, we observed a significant increase in the volume of pediatric epilepsy surgeries, stability in the proportion of Engel class I outcomes, and a modest increment in complexity of the procedures

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice
    corecore