101 research outputs found

    The abundance of Bullet-groups in LCDM

    Full text link
    We estimate the expected distribution of displacements between the two dominant dark matter (DM) peaks (DM-DM displacements) and between DM and gaseous baryon peak (DM-gas displacements) in dark matter halos with masses larger than 101310^{13} Msun/h. We use as a benchmark the observation of SL2S J08544-0121, which is the lowest mass system (1.0×10141.0\times 10^{14} Msun/h) observed so far featuring a bi-modal dark matter distribution with a dislocated gas component. We find that (50±10)(50 \pm 10)% of the dark matter halos with circular velocities in the range 300 km/s to 700 km/s (groups) show DM-DM displacements equal or larger than 186±30186 \pm 30 kpc/h as observed in SL2S J08544-0121. For dark matter halos with circular velocities larger than 700 km/s (clusters) this fraction rises to 70 ±\pm 10%. Using the same simulation we estimate the DM-gas displacements and find that 0.1 to 1.0% of the groups should present separations equal or larger than 87±1487\pm 14kpc/h corresponding to our observational benchmark; for clusters this fraction rises to (7 ±\pm 3)%, consistent with previous studies of dark matter to baryon separations. Considering both constraints on the DM-DM and DM-gas displacements we find that the number density of groups similar to SL2S J08544-0121 is ∌6.0×10−7\sim 6.0\times 10^{-7} Mpc−3^{-3}, three times larger than the estimated value for clusters. These results open up the possibility for a new statistical test of LCDM by looking for DM-gas displacements in low mass clusters and groups.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter

    A New Window of Exploration in the Mass Spectrum: Strong Lensing by Galaxy Groups in the SL2S

    Get PDF
    The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2" (produced by galaxy scale dark matter haloes) to >10" (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re around 1-2" and above 10" have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3"- 8", i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5" and 8". On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.Comment: A&A Accepted. Draft with Appendix images can be found at http://www.dark-cosmology.dk/~marceau/groups_sl2s.pd

    Clinical research without consent in adults in the emergency setting: a review of patient and public views

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In emergency research, obtaining informed consent can be problematic. Research to develop and improve treatments for patients admitted to hospital with life-threatening and debilitating conditions is much needed yet the issue of research without consent (RWC) raises concerns about unethical practices and the loss of individual autonomy. Consistent with the policy and practice turn towards greater patient and public involvement in health care decisions, in the US, Canada and EU, guidelines and legislation implemented to protect patients and facilitate acute research with adults who are unable to give consent have been developed with little involvement of the lay public. This paper reviews research examining public opinion regarding RWC for research in emergency situations, and whether the rules and regulations permitting research of this kind are in accordance with the views of those who ultimately may be the most affected.</p> <p>Methods</p> <p>Seven electronic databases were searched: Medline, Embase, CINAHL, Cochrane Database of Systematic Reviews, Philosopher's Index, Age Info, PsychInfo, Sociological Abstracts and Web of Science. Only those articles pertaining to the views of the public in the US, Canada and EU member states were included. Opinion pieces and those not published in English were excluded.</p> <p>Results</p> <p>Considering the wealth of literature on the perspectives of professionals, there was relatively little information about public attitudes. Twelve studies employing a range of research methods were identified. In five of the six questionnaire surveys around half the sample did <it>not </it>agree generally with RWC, though paradoxically, a higher percentage would <it>personally </it>take part in such a study. Unfortunately most of the studies were not designed to investigate individuals' views in any depth. There also appears to be a level of mistrust of medical research and some patients were more likely to accept an experimental treatment 'outside' of a research protocol.</p> <p>Conclusion</p> <p>There are too few data to evaluate whether the rules and regulations permitting RWC protects – or is acceptable to – the public. However, any attempts to engage the public should take place in the context of findings from further basic research to attend to the apparently paradoxical findings of some of the current surveys.</p

    Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation

    Get PDF
    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12±1 g day−1) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils

    Draft Genome Sequence of Fusarium oxysporum f. sp. albedinis

    No full text

    A development of the oxyhemoglobin dissociation curve analyzer

    No full text

    SARCS strong-lensing galaxy groups II. Mass-concentration relation and strong-lensing bias

    No full text
    International audienceAims. Various studies have shown a lensing bias in the mass-concentration relation of cluster-scale structures that is the result of an alignment of the major axis and the line of sight. In this paper, we aim to study this lensing bias through the mass-concentration relation of galaxy groups, thus extending observational constraints to dark matter haloes of mass = 1013 1014 M fi. Methods. Our work is based on the stacked weak-lensing analysis of a sample of 80 strong-lensing galaxy groups. By combining several lenses, we significantly increase the signal-to-noise ratio of the lensing signal, thus providing constraints on the mass profile that cannot be obtained for individual objects. The resulting shear profiles were fitted with various mass models, among them the Navarro-Frank-White (NFW) profile, which provides an estimate of the total mass and of the concentration of the composite galaxy groups. Results. The main results of our analysis are the following: (i) the lensing signal does not allow us to firmly distinguish between a simple singular isothermal sphere mass distribution and the expected NFW mass profile; (ii) we obtain an average concentration c200 = 8 : 6 + 2 : 1 1 : 3 that is much higher than the value expected from numerical simulations for the corresponding average mass M200 = 0 : 73 + 0 : 11 0 : 10 = 1014 M fi; (iii) the combination of our results with those at larger mass scales gives a mass-concentration relation c(M) of more than two decades in mass, whose slope disagrees with predictions from numerical simulations using unbiased populations of dark matter haloes; (iv) our combined c(M) relation matches results from simulations that only used haloes with a large strong-lensing cross-section, that is, elongated with a major axis close to the line of sight; (v) for the simplest case of prolate haloes, we estimate a lower limit on the minor-to-major axis ratio a = c = 0 : 5 for the average SARCS galaxy group with a toy model. Conclusions. Our analysis based on galaxy groups confirmed the results obtained at larger mass scales: strong lenses apparently present concentrations that are too high, which arises because the triaxial haloes are preferentially oriented with the line of sight. Because more massive systems already have large lensing cross-sections, they do not require a strong elongation along the line of sight, contrary to less massive galaxy groups. Therefore it is natural to observe higher lensing (projected) concentrations for such systems, resulting in an overall mass-concentration relation steeper than that of nonlensing haloes
    • 

    corecore