10,223 research outputs found

    Graph-Facilitated Resonant Mode Counting in Stochastic Interaction Networks

    Get PDF
    Oscillations in a stochastic dynamical system, whose deterministic counterpart has a stable steady state, are a widely reported phenomenon. Traditional methods of finding parameter regimes for stochastically-driven resonances are, however, cumbersome for any but the smallest networks. In this letter we show by example of the Brusselator how to use real root counting algorithms and graph theoretic tools to efficiently determine the number of resonant modes and parameter ranges for stochastic oscillations. We argue that stochastic resonance is a network property by showing that resonant modes only depend on the squared Jacobian matrix J2J^2 , unlike deterministic oscillations which are determined by JJ. By using graph theoretic tools, analysis of stochastic behaviour for larger networks is simplified and chemical reaction networks with multiple resonant modes can be identified easily.Comment: 5 pages, 4 figure

    Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases

    Get PDF
    Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials

    Active and passive microwave measurements in Hurricane Allen

    Get PDF
    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure

    Total Molecular Gas Masses of Planck - Herschel Selected Strongly Lensed Hyper Luminous Infrared Galaxies

    Get PDF
    We report the detection of CO(1 - 0) line emission from seven Planck and Herschel selected hyper luminous (LIR(8-1000um) > 10^13Lsun) infrared galaxies with the Green Bank Telescope (GBT). CO(1 - 0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 10^(13-14) Lsun), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33 - 3.26). The CO(1 - 0) lines show similar profiles as compared to Jup = 2 -4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 (pm 22) Lsun(K km s^-1 pc^-2)^-1 compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of = 0.93 (2 sources), = 0.34 (5 sources), and = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as uMH2 = (0.9 - 27.2) x 10^11(alphaCO/0.8)Msun, where u is the magnification factor and alphaCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times are, on average, tau = 80 Myr, which reveal vigorous starburst activity, and contrast the Gyr depletion timescales observed in local, normal star-forming galaxies.Comment: published in MNRAS, 9pages, 5fig

    Scattering of Dirac particles from non-local separable potentials: the eigenchannel approach

    Full text link
    An application of the new formulation of the eigenchannel method [R. Szmytkowski, Ann. Phys. (N.Y.) {\bf 311}, 503 (2004)] to quantum scattering of Dirac particles from non-local separable potentials is presented. Eigenchannel vectors, related directly to eigenchannels, are defined as eigenvectors of a certain weighted eigenvalue problem. Moreover, negative cotangents of eigenphase-shifts are introduced as eigenvalues of that spectral problem. Eigenchannel spinor as well as bispinor harmonics are expressed throughout the eigenchannel vectors. Finally, the expressions for the bispinor as well as matrix scattering amplitudes and total cross section are derived in terms of eigenchannels and eigenphase-shifts. An illustrative example is also provided.Comment: Revtex, 9 pages, 4 figures, published versio

    Achromatizing a liquid-crystal spectropolarimeter: Retardance vs Stokes-based calibration of HiVIS

    Full text link
    Astronomical spectropolarimeters can be subject to many sources of systematic error which limit the precision and accuracy of the instrument. We present a calibration method for observing high-resolution polarized spectra using chromatic liquid-crystal variable retarders (LCVRs). These LCVRs allow for polarimetric modulation of the incident light without any moving optics at frequencies >10Hz. We demonstrate a calibration method using pure Stokes input states that enables an achromatization of the system. This Stokes-based deprojection method reproduces input polarization even though highly chromatic instrument effects exist. This process is first demonstrated in a laboratory spectropolarimeter where we characterize the LCVRs and show example deprojections. The process is then implemented the a newly upgraded HiVIS spectropolarimeter on the 3.67m AEOS telescope. The HiVIS spectropolarimeter has also been expanded to include broad-band full-Stokes spectropolarimetry using achromatic wave-plates in addition to the tunable full-Stokes polarimetric mode using LCVRs. These two new polarimetric modes in combination with a new polarimetric calibration unit provide a much more sensitive polarimetric package with greatly reduced systematic error.Comment: Accepted in PAS

    Enhanced Transmission of Light and Particle Waves through Subwavelength Nanoapertures by Far-Field Interference

    Full text link
    Subwavelength aperture arrays in thin metal films can enable enhanced transmission of light and matter (atom) waves. The phenomenon relies on resonant excitation and interference of the plasmon or matter waves on the metal surface. We show a new mechanism that could provide a great resonant and nonresonant transmission enhancement of the light or de Broglie particle waves passed through the apertures not by the surface waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. In contrast to other models, the mechanism depends neither on the nature (light or matter) of the beams (continuous waves or pulses) nor on material and shape of the multiple-beam source (arrays of 1-D and 2-D subwavelength apertures, fibers, dipoles or atoms). The Wood anomalies in transmission spectra of gratings, a long standing problem in optics, follow naturally from the interference properties of our model. The new point is the prediction of the Wood anomaly in a classical Young-type two-source system. The new mechanism could be interpreted as a non-quantum analog of the superradiance emission of a subwavelength ensemble of atoms (the light power and energy scales as the number of light-sources squared, regardless of periodicity) predicted by the well-known Dicke quantum model.Comment: Revised version of MS presented at the Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference, 18-21 June, 2007, Washington, US

    Meteorite Dust and Health - A Novel Approach for Determining Bulk Compositions for Toxicological Assessments of Precious Materials

    Get PDF
    With the resurgence of human curiosity to explore planetary bodies beyond our own, comes the possibility of health risks associated with the materials covering the surface of these planetary bodies. In order to mitigate these health risks and prepare ourselves for the eventuality of sending humans to other planetary bodies, toxicological evaluations of extraterrestrial materials is imperative (Harrington et al. 2017). Given our close proximity, as well as our increased datasets from various missions (e.g., Apollo, Mars Exploration Rovers, Dawn, etc), the three most likely candidates for initial human surface exploration are the Moon, Mars, and asteroid 4Vesta. Seven samples, including lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt, were examined for bulk chemistry, mineralogy, geochemical reactivity, and inflammatory potential. In this study, we have taken alliquots from these samples, both the fresh samples and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB), and performed low pressure, high temperature melting experiments to determine the bulk composition of the materials that were previously examined
    • …
    corecore