468 research outputs found

    Kinks, rings, and rackets in filamentous structures

    Full text link
    Carbon nanotubes and biological filaments each spontaneously assemble into kinked helices, rings, and "tennis racket" shapes due to competition between elastic and interfacial effects. We show that the slender geometry is a more important determinant of the morphology than any molecular details. Our mesoscopic continuum theory is capable of quantifying observations of these structures, and is suggestive of their occurrence in other filamentous assemblies as well.Comment: This paper was originally published in PNAS 100: 12141-12146 (2003). The present version has corrected Eq. 3, A1, and A2, and some minor typo

    First STEPS Phase II Initiative: Improving Developmental, Autism, and Lead Screening for Children

    Get PDF
    First STEPS (Strengthening Together Early Preventive Services) is a learning initiative supported by Maine\u27s CHIPRA quality demonstration grant to support measure-driven practice improvement in pediatric and family practices across the state on improving developmental, autism, and lead screening for children. This report, authored by research staff at the USM Muskie School, evaluates the impact of Phase II of Maine\u27s First STEPS initiative, which was implemented from May to December 2012 and included 12 practices serving more than 20,000 children on MaineCare (Maine\u27s Medicaid system). The authors assess changes in developmental, autism, and lead screening rates and evidence-based office processes in participating practices before and after the initiative, as well as related systems changes. They also summarize lessons learned in implementing changes in practices and challenges in using CHIPRA and IHOC developmental, autism, and lead screening measures at the practice-level to inform quality improvement

    Phase field model of premelting of grain boundaries

    Full text link
    We present a phase field model of solidification which includes the effects of the crystalline orientation in the solid phase. This model describes grain boundaries as well as solid-liquid boundaries within a unified framework. With an appropriate choice of coupling of the phase field variable to the gradient of the crystalline orientation variable in the free energy, we find that high angle boundaries undergo a premelting transition. As the melting temperature is approached from below, low angle grain boundaries remain narrow. The width of the liquid layer at high angle grain boundaries diverges logarithmically. In addition, for some choices of model coupling, there may be a discontinuous jump in the width of the fluid layer as function of temperature.Comment: 6 pages, 9 figures, RevTeX

    Fluctuating semiflexible polymer ribbon constrained to a ring

    Get PDF
    Twist stiffness and an asymmetric bending stiffness of a polymer or a polymer bundle is captured by the elastic ribbon model. We investigate the effects a ring geometry induces to a thermally fluctuating ribbon, finding bend-bend coupling in addition to twist-bend coupling. Furthermore, due to the geometric constraint the polymer's effective bending stiffness increases. A new parameter for experimental investigations of polymer bundles is proposed: the mean square diameter of a ribbonlike ring, which is determined analytically in the semiflexible limit. Monte Carlo simulations are performed which affirm the model's prediction up to high flexibility.Comment: 6 pages, 3 figures, Version as published in Eur. Phys. J.

    Stable ultrahigh-density magneto-optical recordings using introduced linear defects

    Full text link
    The stability of data bits in magnetic recording media at ultrahigh densities is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized spin domains, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures, are more stable against thermal self-erasure than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of \sim100 Gbit inch2^{-2} have been demonstrated using recent advances in the bit writing and reading techniques. But the roughness and mobility of the magnetic domain walls prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometers in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch2^{-2}.Comment: 5 pages, 4 figures, see also an article in TRN News at http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm

    Resistive state of superconducting structures with fractal clusters of a normal phase

    Full text link
    The effect of morphologic factors on magnetic flux dynamics and critical currents in percolative superconducting structures is considered. The superconductor contains the fractal clusters of a normal phase, which act as pinning centers. The properties of these clusters are analyzed in the general case of gamma-distribution of their areas. The statistical characteristics of the normal phase clusters are studied, the critical current distribution is derived, and the dependencies of the main statistical parameters on the fractal dimension are found. The effect of fractal clusters of a normal phase on the electric field induced by the motion of the magnetic flux after the vortices have been broken away from pinning centers is considered. The voltage-current characteristics of fractal superconducting structures in a resistive state for an arbitrary fractal dimension are obtained. It is found that the fractality of the boundaries of normal phase clusters intensifies magnetic flux trapping and thereby increases the current-carrying capability of the superconductor.Comment: 15 pages with 8 figures, revtex3, alternative e-mail of author is [email protected]

    Shape Changes of Self-Assembled Actin Bilayer Composite Membranes

    Full text link
    We report the self-assembly of thin actin shells beneath the membranes of giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin polymerization in the initially spherical vesicles. Buckling of the vesicles and the formation of blisters after thermally induced bilayer expansion is demonstrated. Bilayer flickering is dominated by tension generated by its coupling to the actin cortex. Quantitative flicker analysis suggests the bilayer and the actin cortex are separated by 0.4 \mum to 0.5 \mum due to undulation forces.Comment: pdf-file, has been accepted by PR

    A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam

    Full text link
    The paper reports on a high precision equipment designed to modify over 3-dimensions (3D) by means of high-energy gold ions the local properties of thin and thick films. A target-moving system aimed at creating patterns across the volume is driven by an x-y writing protocol that allows one to modify beam sensitive samples over micrometer-size regions of whatever shape. The apparatus has a mechanical resolution of 15 nm. The issue of the local fluence measurement has been particularly addressed. The setup has been checked by means of different geometries patterned on beam sensitive sheets as well as on superconducting materials. In the last case the 3D modification consists of amorphous nanostructures. The nanostructures create zones with different dissipative properties with respect to the virgin regions. The main analysis method consists of magneto-optical imaging that provides local information on the electrodynamics of the modified zones. Features typical of non-linear current flow hint at which pattern geometry is more functional to applications in the framework of nanostructures across superconducting films.Comment: 7 page

    DNA uptake into nuclei: Numerical and analytical results

    Full text link
    The dynamics of polymer translocation through a pore has been the subject of recent theoretical and experimental works. We have considered theoretical estimates and performed computer simulations to understand the mechanism of DNA uptake into the cell nucleus, a phenomenon experimentally investigated by attaching a small bead to the free end of the double helix and pulling this bead with the help of an optical trap. The experiments show that the uptake is monotonous and slows down when the remaining DNA segment becomes very short. Numerical and analytical studies of the entropic repulsion between the DNA filament and the membrane wall suggest a new interpretation of the experimental observations. Our results indicate that the repulsion monotonically decreases as the uptake progresses. Thus, the DNA is pulled in (i) either by a small force of unknown origin, and then the slowing down can be interpreted only statistically; (ii) or by a strong but slow ratchet mechanism, which would naturally explain the observed monotonicity, but then the slowing down requires additional explanations. Only further experiments can unambiguously distinguish between these two mechanisms.Comment: 12 pages, 6 figures, submitted to J. Phys. Cond. Ma
    corecore