156 research outputs found

    Genetic fingerprinting reveals natal origins of male leatherback turtles encountered in the Atlantic Ocean and Mediterranean Sea

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Biology 164 (2017): 181, doi:10.1007/s00227-017-3211-0.Understanding population dynamics in broadly distributed marine species with cryptic life history stages is challenging. Information on the population dynamics of sea turtles tends to be biased toward females, due to their accessibility for study on nesting beaches. Males are encountered only at sea; there is little information about their migratory routes, residence areas, foraging zones, and population boundaries. In particular, male leatherbacks (Dermochelys coriacea) are quite elusive; little is known about adult and juvenile male distribution or behavior. The at-sea distribution of male turtles from different breeding populations is not known. Here, 122 captured or stranded male leatherback turtles from the USA, Turkey, France, and Canada (collected 1997–2012) were assigned to one of nine Atlantic basin populations using genetic analysis with microsatellite DNA markers. We found that all turtles originated from western Atlantic nesting beaches (Trinidad 55%, French Guiana 31%, and Costa Rica 14%). Although genetic data for other Atlantic nesting populations were represented in the assignment analysis (St. Croix, Brazil, Florida, and Africa (west and south), none of the male leatherbacks included in this study were shown to originate from these populations. This was an unexpected result based on estimated source population sizes. One stranded turtle from Turkey was assigned to French Guiana, while others that were stranded in France were from Trinidad or French Guiana breeding populations. For 12 male leatherbacks in our dataset, natal origins determined from the genetic assignment tests were compared to published satellite and flipper tag information to provide evidence of natal homing for male leatherbacks, which corroborated our genetic findings. Our focused study on male leatherback natal origins provides information not previously known for this cryptic, but essential component of the breeding population. This method should provide a guideline for future studies, with the ultimate goal of improving management and conservation strategies for threatened and endangered species by taking the male component of the breeding population into account.Sample collection in Nova Scotia, Canada, was supported by funding from Canadian Wildlife Federation, Environment Canada, Fisheries and Oceans Canada, George Cedric Metcalf Foundation, Habitat Stewardship Program for Species at Risk, National Fish and Wildlife Foundation (USA), National Marine Fisheries Service (USA), Natural Sciences and Engineering Research Council of Canada, and World Wildlife Fund Canada. Funding for US samples was provided by National Oceanic and Atmospheric Administration, Massachusetts Division of Marine Fisheries, National Fish and Wildlife Foundation, and Cape Cod Commercial Fisherman’s Alliance. Funding support for this analysis and for Kelly R. Stewart was provided by a Lenfest Ocean Program Grant

    A Vessel Pickup and Delivery Problem from the Disruption Management in Offshore Supply Vessel Operations

    No full text
    This paper considers a vessel pickup and delivery problem that arises in the case of disruptions in the supply vessel logistics in the offshore oil and gas industry. The problem can be modelled as a multi-vehicle pickup and delivery problem where delivery orders are transported by supply vessels from an onshore supply base (depot) to a set of offshore oil and gas installations, while pickup orders are to be transported from the installations back to the supply base (i.e. backload). We present both an arc-flow and a path-flow formulation for the problem. For the path-flow formulation we also propose an efficient dynamic programming algorithm for generating the paths, which represent feasible vessel voyages. It is shown through a computational study on various realistic test instances provided by a major oil and gas company that the path-flow model is superior with respect to computational performance.acceptedVersio
    • …
    corecore