12,271 research outputs found
Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009
The last solar minimum activity period, and the consequent minimum modulation
conditions for cosmic rays, was unusual. The highest levels of galactic protons
were recorded at Earth in late 2009 in contrast to expectations. Proton spectra
observed for 2006 to 2009 from the PAMELA cosmic ray detector on-board the
Resurs-DK1 satellite are presented together with the solutions of a
comprehensive numerical model for the solar modulation of cosmic rays. The
model is used to determine what mechanisms were mainly responsible for the
modulation of protons during this period, and why the observed spectrum for
2009 was the highest ever recorded. From mid-2006 until December 2009 we find
that the spectra became significantly softer because increasingly more low
energy protons had reached Earth. To simulate this effect, the rigidity
dependence of the diffusion coefficients had to decrease significantly below ~3
GeV. The modulation minimum period of 2009 can thus be described as relatively
more "diffusion dominated" than previous solar minima. However, we illustrate
that drifts still had played a significant role but that the observable
modulation effects were not as well correlated with the waviness of the
heliospheric current sheet as before. Protons still experienced global gradient
and curvature drifts as the heliospheric magnetic field had decreased
significantly until the end of 2009, in contrast to the moderate decreases
observed during previous minimum periods. We conclude that all modulation
processes contributed to the observed increases in the proton spectra for this
period, exhibiting an intriguing interplay of these major mechanisms
Isolation and mapping of a C3'H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress
Globe artichoke represents a natural source of phenolic compounds with dicaffeoylquinic acids along with their biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the predominant molecules. We report the isolation and characterization of a full-length cDNA and promoter of a globe artichoke p-coumaroyl ester 3¿-hydroxylase (CYP98A49), which is involved in both chlorogenic acid and lignin biosynthesis. Phylogenetic analyses demonstrated that this gene belongs to the CYP98 family. CYP98A49 was also heterologously expressed in yeast, in order to perform an enzymatic assay with p-coumaroylshikimate and p-coumaroylquinate as substrates. Real Time quantitative PCR analysis revealed that CYP98A49 expression is induced upon exposure to UV-C radiation. A single nucleotide polymorphism in the CYP98A49 gene sequence of two globe artichoke varieties used for genetic mapping allowed the localization of this gene to linkage group 10 within the previously developed map
Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline
BACKGROUND:
Differential methylation of the two alleles is a hallmark of imprinted genes. Correspondingly, loss of DNA methyltransferase function results in aberrant imprinting and abnormal post-fertilization development. In the mouse, mutations of the oocyte-specific isoform of the DNA methyltransferase Dnmt1 (Dnmt1o) and of the methyltransferase-like Dnmt3L gene result in specific failures of imprint establishment or maintenance, at multiple loci. We have previously shown in humans that an analogous inherited failure to establish imprinting at multiple loci in the female germline underlies a rare phenotype of recurrent hydatidiform mole.
RESULTS:
We have identified a human homologue of the murine Dnmt1o and assessed its pattern of expression. Human DNMT1o mRNA is detectable in mature oocytes and early fertilized embryos but not in any somatic tissues analysed. The somatic isoform of DNMT1 mRNA, in contrast, is not detectable in human oocytes. In the previously-described family with multi-locus imprinting failure, mutation of DNMT1o and of the other known members of this gene family has been excluded.
CONCLUSIONS:
Mutation of the known DNMT genes does not underlie familial hydatidiform mole, at least in the family under study. This suggests that trans-acting factors other than the known methyltransferases are required for imprint establishment in humans, a concept that has indirect support from recent biochemical studies of DNMT3L
Certification of the mass concentration of arsenic, cadmium, chromium, copper, iron, manganese, mercury, lead, nickel and selenium in wastewater: ERM®-CA713
The report describes the production and certification of the certified reference material ERM-CA713 Wastewater. The material was produced to replace the existing materials BCR-713, BCR-714 and BCR-715 because of changes in the legislation, in particular the requirement for the monitoring of Hg as a priority substance. The material is certified for As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Se. and will serve as a quality control tool for the laboratories involved in the mandatory monitoring of the Priority Substances prescribed under the Water Framework Directive (WFD, 2000/60/EC).JRC.D.2-Standards for Innovation and sustainable Developmen
Electrochemical behaviour of cytochrome c at low potentials
d.c. polarograms of bovine heart cytochrome c show reduction currents at low potentials. This is observed in buffer solutions with pH values between 1 and 10.5. These currents are attributed to catalytic hydrogen formation (pre-sodium currents). After succinylation of the protein, the current in glycine-NaOH buffer of pH 10.5 disappears almost completely, whereas that in acetate buffer of pH 4.5 is affected only slightly. It is concluded that different groups are responsible for the currents observed in these two buffer
Normal stresses in semiflexible polymer hydrogels
Biopolymer gels such as fibrin and collagen networks are known to develop
tensile axial stress when subject to torsion. This negative normal stress is
opposite to the classical Poynting effect observed for most elastic solids
including synthetic polymer gels, where torsion provokes a positive normal
stress. As recently shown, this anomalous behavior in fibrin gels depends on
the open, porous network structure of biopolymer gels, which facilitates
interstitial fluid flow during shear and can be described by a phenomenological
two-fluid model with viscous coupling between network and solvent. Here we
extend this model and develop a microscopic model for the individual diagonal
components of the stress tensor that determine the axial response of
semi-flexible polymer hydrogels. This microscopic model predicts that the
magnitude of these stress components depends inversely on the characteristic
strain for the onset of nonlinear shear stress, which we confirm experimentally
by shear rheometry on fibrin gels. Moreover, our model predicts a transient
behavior of the normal stress, which is in excellent agreement with the full
time-dependent normal stress we measure.Comment: 12 pages, 8 figure
- …