3,561 research outputs found

    Eclipses of the inner satellites of Jupiter observed in 2015

    Full text link
    During the 2014-2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites. After background removal, we computed a differential aperture photometry to obtain the light flux, and followed with an astrometric reduction. We provide astrometric results with an external precision of 53 mas for the eclipse of Thebe, and 20 mas for that of Amalthea. These observation accuracies largely override standard astrometric measurements. The (O-C)s for the eclipse of Thebe are 75 mas on the X-axis and 120 mas on the Y-axis. The (O-C)s for the total eclipses of Amalthea are 95 mas and 22 mas, along the orbit, for two of the three events. Taking into account the ratio of (O-C) to precision of the astrometric results, we show a significant discrepancy with the theory established by Avdyushev and Ban'shikova in 2008, and the JPL JUP 310 ephemeris.Comment: 7 pages, 10 figures, 4 table

    Micromegas in a Bulk

    Full text link
    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicineComment: 6 pages, 4 figure

    Dark matter directional detection with MIMAC

    Full text link
    MiMac is a project of micro-TPC matrix of gaseous (He3, CF4) chambers for direct detection of non-baryonic dark matter. Measurement of both track and ionization energy will allow the electron-recoil discrimination, while access to the directionnality of the tracks will open a unique way to distinguish a geniune WIMP signal from any background. First reconstructed tracks of 5.9 keV electrons are presented as a proof of concept.Comment: 4 pages, proc. of the 44th Rencontres De Moriond: Electroweak Interactions And Unified Theories, 7-14 Mar 2009, La Thuile, Ital

    Impact of minority concentration on fundamental (H)D ICRF heating performance in JET-ILW

    Get PDF
    ITER will start its operation with non-activated hydrogen and helium plasmas at a reduced magnetic field of B-0 = 2.65 T. In hydrogen plasmas, the two ion cyclotron resonance frequency (ICRF) heating schemes available for central plasma heating (fundamental H majority and 2nd harmonic He-3 minority ICRF heating) are likely to suffer from relatively low RF wave absorption, as suggested by numerical modelling and confirmed by previous JET experiments conducted in conditions similar to those expected in ITER's initial phase. With He-4 plasmas, the commonly adopted fundamental H minority heating scheme will be used and its performance is expected to be much better. However, one important question that remains to be answered is whether increased levels of hydrogen (due to e. g. H pellet injection) jeopardize the high performance usually observed with this heating scheme, in particular in a full-metal environment. Recent JET experiments performed with the ITER-likewall shed some light onto this question and the main results concerning ICRF heating performance in L-mode discharges are summarized here

    Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

    Full text link
    The Time Projection Chamber (TPC) for the International Linear Collider will need to measure about 200 track points with a resolution close to 100 ÎĽ\mum. A Micro Pattern Gas Detector (MPGD) readout TPC could achieve the desired resolution with existing techniques using sub-millimeter width pads at the expense of a large increase in the detector cost and complexity. We have recently applied a new MPGD readout concept of charge dispersion to a prototype GEM-TPC and demonstrated the feasibility of achieving good resolution with pads similar in width to the ones used for the proportional wire TPC. The charge dispersion studies were repeated with a Micromegas TPC amplification stage. We present here our first results on the Micromegas-TPC resolution with charge dispersion. The TPC resolution with the Micromegas readout is compared to our earlier GEM results and to the resolution expected from electron statistics and transverse diffusion in a gaseous TPC.Comment: 5 pages, 8 figures, to appar in the Proceedings of the 2005 International Linear Collider Workshop (LCWS05), Stanford, 18-22 March 200
    • …
    corecore