3,147 research outputs found

    Phase-Transition Theory of Instabilities. II. Fourth-Harmonic Bifurcations and Lambda-Transitions

    Full text link
    We use a free-energy minimization approach to describe the secular and dynamical instabilities as well as the bifurcations along equilibrium sequences of rotating, self-gravitating fluid systems. Our approach is fully nonlinear and stems from the Ginzburg-Landau theory of phase transitions. In this paper, we examine fourth-harmonic axisymmetric disturbances in Maclaurin spheroids and fourth-harmonic nonaxisymmetric disturbances in Jacobi ellipsoids. These two cases are very similar in the framework of phase transitions. Irrespective of whether a nonlinear first-order phase transition occurs between the critical point and the higher turning point or an apparent second-order phase transition occurs beyond the higher turning point, the result is fission (i.e. ``spontaneous breaking'' of the topology) of the original object on a secular time scale: the Maclaurin spheroid becomes a uniformly rotating axisymmetric torus and the Jacobi ellipsoid becomes a binary. The presence of viscosity is crucial since angular momentum needs to be redistributed for uniform rotation to be maintained. The phase transitions of the dynamical systems are briefly discussed in relation to previous numerical simulations of the formation and evolution of protostellar systems.Comment: 34 pages, postscript, compressed,uuencoded. 7 figures available in postscript, compressed form by anonymous ftp from asta.pa.uky.edu (cd /shlosman/paper2 mget *.ps.Z). To appear in Ap

    The formation of black holes in spherically symmetric gravitational collapse

    Full text link
    We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system. We find explicit conditions on the initial data, with ADM mass M, such that the resulting spacetime has the following properties: there is a family of radially outgoing null geodesics where the area radius r along each geodesic is bounded by 2M, the timelike lines r=c∈[0,2M]r=c\in [0,2M] are incomplete, and for r>2M the metric converges asymptotically to the Schwarzschild metric with mass M. The initial data that we construct guarantee the formation of a black hole in the evolution. We also give examples of such initial data with the additional property that the solutions exist for all r≥0r\geq 0 and all Schwarzschild time, i.e., we obtain global existence in Schwarzschild coordinates in situations where the initial data are not small. Some of our results are also established for the Einstein equations coupled to a general matter model characterized by conditions on the matter quantities.Comment: 36 pages. A corollary on global existence in Schwarzschild coordinates for data which are not small is added together with minor modification

    Self-Similar Scalar Field Collapse: Naked Singularities and Critical Behaviour

    Get PDF
    Homothetic scalar field collapse is considered in this article. By making a suitable choice of variables the equations are reduced to an autonomous system. Then using a combination of numerical and analytic techniques it is shown that there are two classes of solutions. The first consists of solutions with a non-singular origin in which the scalar field collapses and disperses again. There is a singularity at one point of these solutions, however it is not visible to observers at finite radius. The second class of solutions includes both black holes and naked singularities with a critical evolution (which is neither) interpolating between these two extremes. The properties of these solutions are discussed in detail. The paper also contains some speculation about the significance of self-similarity in recent numerical studies.Comment: 27 pages including 5 encapsulated postcript figures in separate compressed file, report NCL94-TP1

    Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms

    Get PDF
    We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou's network. We improve upon the value 4/3 by means of Coordination Mechanisms. We increase the latency functions of the edges in the network, i.e., if ℓe(x)\ell_e(x) is the latency function of an edge ee, we replace it by ℓ^e(x)\hat{\ell}_e(x) with ℓe(x)≤ℓ^e(x)\ell_e(x) \le \hat{\ell}_e(x) for all xx. Then an adversary fixes a demand rate as input. The engineered Price of Anarchy of the mechanism is defined as the worst-case ratio of the Nash social cost in the modified network over the optimal social cost in the original network. Formally, if \CM(r) denotes the cost of the worst Nash flow in the modified network for rate rr and \Copt(r) denotes the cost of the optimal flow in the original network for the same rate then [\ePoA = \max_{r \ge 0} \frac{\CM(r)}{\Copt(r)}.] We first exhibit a simple coordination mechanism that achieves for any network of parallel links an engineered Price of Anarchy strictly less than 4/3. For the case of two parallel links our basic mechanism gives 5/4 = 1.25. Then, for the case of two parallel links, we describe an optimal mechanism; its engineered Price of Anarchy lies between 1.191 and 1.192.Comment: 17 pages, 2 figures, preliminary version appeared at ESA 201

    How to detect an anti-spacetime

    Full text link
    Is it possible, in principle, to measure the sign of the Lapse? We show that fermion dynamics distinguishes spacetimes having the same metric but different tetrads, for instance a Lapse with opposite sign. This sign might be a physical quantity not captured by the metric. We discuss its possible role in quantum gravity.Comment: Article awarded with an "Honorable Mention" from the 2012 Gravity Foundation Award. 6 pages, 8 (pretty) figure

    High-Temperature Activated AB2 Nanopowders for Metal Hydride Hydrogen Compression

    Full text link
    A reliable process for compressing hydrogen and for removing all contaminants is that of the metal hydride thermal compression. The use of metal hydride technology in hydrogen compression applications though, requires thorough structural characterization of the alloys and investigation of their sorption properties. The samples have been synthesized by induction - levitation melting and characterized by Rietveld analysis of the X-Ray diffraction (XRD) patterns. Volumetric PCI (Pressure-Composition Isotherm) measurements have been conducted at 20, 60 and 90 oC, in order to investigate the maximum pressure that can be reached from the selected alloys using water of 90oC. Experimental evidence shows that the maximum hydrogen uptake is low since all the alloys are consisted of Laves phases, but it is of minor importance if they have fast kinetics, given a constant volumetric hydrogen flow. Hysteresis is almost absent while all the alloys release nearly all the absorbed hydrogen during desorption. Due to hardware restrictions, the maximum hydrogen pressure for the measurements was limited at 100 bars. Practically, the maximum pressure that can be reached from the last alloy is more than 150 bars.Comment: 9 figures. arXiv admin note: text overlap with arXiv:1207.354

    Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity

    Full text link
    We give a model of the higher-dimensional spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity. A simple formulation of the basic equations is given for the spacetime M≈M2×Kn−2M \approx M^2 \times K^{n-2} with a perfect fluid and a cosmological constant. This is a generalization of the Misner-Sharp formalism of the four-dimensional spherically symmetric spacetime with a perfect fluid in general relativity. The whole picture and the final fate of the gravitational collapse of a dust cloud differ greatly between the cases with n=5n=5 and n≥6n \ge 6. There are two families of solutions, which we call plus-branch and the minus-branch solutions. Bounce inevitably occurs in the plus-branch solution for n≥6n \ge 6, and consequently singularities cannot be formed. Since there is no trapped surface in the plus-branch solution, the singularity formed in the case of n=5n=5 must be naked. In the minus-branch solution, naked singularities are massless for n≥6n \ge 6, while massive naked singularities are possible for n=5n=5. In the homogeneous collapse represented by the flat Friedmann-Robertson-Walker solution, the singularity formed is spacelike for n≥6n \ge 6, while it is ingoing-null for n=5n=5. In the inhomogeneous collapse with smooth initial data, the strong cosmic censorship hypothesis holds for n≥10n \ge 10 and for n=9n=9 depending on the parameters in the initial data, while a naked singularity is always formed for 5≤n≤85 \le n \le 8. These naked singularities can be globally naked when the initial surface radius of the dust cloud is fine-tuned, and then the weak cosmic censorship hypothesis is violated.Comment: 23 pages, 1 figure, final version to appear in Physical Review

    Welfare guarantees for proportional allocations

    Full text link
    According to the proportional allocation mechanism from the network optimization literature, users compete for a divisible resource -- such as bandwidth -- by submitting bids. The mechanism allocates to each user a fraction of the resource that is proportional to her bid and collects an amount equal to her bid as payment. Since users act as utility-maximizers, this naturally defines a proportional allocation game. Recently, Syrgkanis and Tardos (STOC 2013) quantified the inefficiency of equilibria in this game with respect to the social welfare and presented a lower bound of 26.8% on the price of anarchy over coarse-correlated and Bayes-Nash equilibria in the full and incomplete information settings, respectively. In this paper, we improve this bound to 50% over both equilibrium concepts. Our analysis is simpler and, furthermore, we argue that it cannot be improved by arguments that do not take the equilibrium structure into account. We also extend it to settings with budget constraints where we show the first constant bound (between 36% and 50%) on the price of anarchy of the corresponding game with respect to an effective welfare benchmark that takes budgets into account.Comment: 15 page
    • …
    corecore