25 research outputs found

    All-electronic frequency stabilization of a DFB laser diode

    Get PDF
    A laser diode’s junction voltage is a sensitive measure of its temperature and can be used in a thermal control feedback loop. To compensate for the temperature dependence of the laser’s internal resistance, we have measured the dynamic resistance, ∂V/∂I, by modulating the injection current and measuring the demodulated voltage. The junction voltage was thus controlled while operating at fixed DC injection current. Over an external temperature range of 15°C to 35°C, this stabilised the centre frequency (wavelength) of a 1651 nm DFB laser diode with a residual mean frequency shift of 60 MHz (0.5pm), less than the uncertainty on the centre frequency of 80 MHz (0.7 pm). Under the same conditions, conventional thermistor control gave a systematic wavelength shift of −8.4 GHz (−76 pm), and control of the uncompensated forward voltage gave a shift of 9.9 GHz (90 pm)

    Dynamic fiber-optic shape sensing using fiber segment interferometry

    Get PDF
    Dynamic fiber-optic shape sensing, often also referred to as curvature or bend sensing, is demonstrated using fiber segment interferometry, where chains of fiber segments, separated by broadband Bragg grating reflectors, are interrogated using range-resolved interferometry. In this work, the theory of interferometric curvature sensing using fiber segments is developed in detail, including techniques to infer lateral displacements from the measured differential strain data and methods for directional calibration of the sensor. A proof-of-concept experiment is performed, where four fiber strings, each containing four fiber segments of gauge length 20 cm each, are attached to the opposing sides of a flexible support structure and the resulting differential strain measurements are used to determine the lateral displacements of a 0.8 m cantilever test object in two dimensions. Dynamic tip displacement measurements at 40nm . HZ-0.5 noise levels over a 21 kHz bandwidth demonstrate the suitability of this approach for highly sensitive and cost-effective fiber-optic lateral displacement or vibration measurements

    Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load.

    Get PDF
    The transverse load and temperature sensitivities of fibre Bragg gratings (FBGs) fabricated in a range of commercially available stress and geometrically induced high birefringent (HiBi) fibres have been experimentally investigated. The wavelength reflected by the FBG in each polarization eigenmode was measured independently and simultaneously using a custom designed interrogation system. The highest transverse load sensitivity, of 0.23 ± 0.02 nm/(N/mm), was obtained with HiBi FBGs fabricated in elliptically clad fibre. This was higher than for any other HiBi fibre, which, coupled with the small diameter of the fibre, makes it a good candidate for an embedded or surface mounted strain sensor. The highest temperature sensitivity of 16.5 ± 0.1 pm °C-1, approximately 27% greater than any other fibre type, was obtained with the HiBi FBG fabricated in Panda fibre. HiBi FBG sensors fabricated in D-clad fibre were the only ones to exhibit identical temperature sensitivities for the slow and fast axes (11.5 ± 0.1 pm

    Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser

    Get PDF
    It is known that optical fiber long period gratings (LPGs) exhibit their highest sensitivity to environmental perturbation when the period is such that the phase matching condition is satisfied at its turning point. The reproducible fabrication of LPGs with parameters satisfying this condition requires high resolution control over the properties of the grating. The performance of an LPG fabrication system based on the point-by-point UV exposure approach is analyzed in this paper, and the control of factors influencing reproducibility, including period, duty cycle, and the environment in which the device is fabricated, is explored

    In-line laser Doppler velocimeter using fibre-optic Bragg grating interferometric filters

    Get PDF
    An all fibre-based laser Doppler velocimetry system for the measurement of the predominantly on-axis component of velocity is presented. The technique employs Bragg grating-based Fabry-Perot interferometric filters custom-designed to suit the transduction of Doppler optical frequency shifts to intensity. The sensitivity of the in-fibre filters to strain is exploited to provide tuning of the filter relative to the centre wavelength of the laser and of the spectral shape of the filter, which in turn varies the velocity range, sensitivity and resolution. A phase-locking scheme incorporated to stabilize the filter is described together with a laser-wavelength stabilization system that locks to a Doppler-broadened absorption line of iodine vapour. An optical fibre-linked probe head is used to couple the laser beam at 514.5 nm to and from the measurement volume. The velocimeter is characterized by easuring the velocity of a rotating disc over ranges of +/-42 and +/-7 m s(-1) with a resolution of 0.2 m s(-1)

    All-electronic frequency stabilization of a DFB laser diode

    Get PDF
    A laser diode’s junction voltage is a sensitive measure of its temperature and can be used in a thermal control feedback loop. To compensate for the temperature dependence of the laser’s internal resistance, we have measured the dynamic resistance, ∂V/∂I, by modulating the injection current and measuring the demodulated voltage. The junction voltage was thus controlled while operating at fixed DC injection current. Over an external temperature range of 15°C to 35°C, this stabilised the centre frequency (wavelength) of a 1651 nm DFB laser diode with a residual mean frequency shift of 60 MHz (0.5pm), less than the uncertainty on the centre frequency of 80 MHz (0.7 pm). Under the same conditions, conventional thermistor control gave a systematic wavelength shift of −8.4 GHz (−76 pm), and control of the uncompensated forward voltage gave a shift of 9.9 GHz (90 pm)

    Field monitoring of static, dynamic, and statnamic pile loading tests using fibre Bragg grating strain sensors

    Get PDF
    Pile loading test plays an important role in the field of piling engineering. In order to gain further insight into the load transfer mechanism, strain gauges are often used to measure local strains along the piles. This paper reports a case whereby FBG strain sensors was employed in a field trial conducted on three different types of pile loading tests in a glacial till. The instrumentation systems were configured to suit the specific characteristic of each type of test. Typical test results are presented. The great potential of using FBG sensors for pile testing is shown. © 2009 SPIE

    Strain development in curing epoxy resin and glass fibre/epoxy composites monitored by fibre Bragg grating sensors in birefringent optical fibre

    Get PDF
    Fibre Bragg gratings (FBGs) fabricated in linearly birefringent fibres were embedded in glass fibre/epoxy composites and in the corresponding unreinforced resin to monitor the effective transverse strain development during the cure process. The optical fibres containing the FBG sensors were aligned either normal or parallel to the reinforcement fibres in unidirectional glass fibre/epoxy prepregs. The chemical cure kinetics of the epoxy resin system used were studied using differential scanning calorimetry, in order to investigate the correlation between the strain monitoring results and the evolution of the curing reaction. A non-parametric cure kinetics model was developed and validated for this purpose. The effective transverse strain measured by the FBGs demonstrated high sensitivity to the degree of cure as a result of the densification of the resin caused by the curing reaction. The effective compressive transverse strain developed during the reaction, and thus the corresponding sensitivity to chemical changes, was higher in the case of the sensing fibre aligned normal to the reinforcement fibres than in the case of the sensor fibre parallel to the reinforcement fibres. Small but measurable sensitivity to cure induced changes was observed in the case of the unreinforced resin

    Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: 2. Measurement of shape

    Get PDF
    Optical fibre strain and shape measurement sensors were deployed on a rotor blade during a full-speed helicopter ground run, with real-time data wirelessly streamed from rotor hub-mounted sensor interrogators. In part 2 of a 2-part paper series, two-dimensional direct fibre-optic shape sensing (DFOSS), using fibre segment interferometry-based interrogation is investigated. The concept of blade shape change visualisation over one rotation period using rotation displacement surfaces is introduced and the usefulness of DFOSS data to gain additional insights by determining operational modal frequencies independently for both horizontal and vertical vibration directions of the blade is demonstrated
    corecore