11 research outputs found

    Influence of catalyst structure on PEM fuel cell performance – A numerical investigation

    Get PDF
    The effect of the catalyst microstructure on a 5 cm2 PEM fuel cell performance is numerically investigated. The catalyst layer composition and properties (i.e. ionomer volume fraction, platinum loading, particle radius, electrochemical active area and carbon support type), and the mass transport resistance due to the ionomer and liquid water surrounding the catalyst particles, are incorporated into the model. The effects of the above parameters are discussed in terms of the polarization curves and the local distributions of the key parameters. An optimum range of the ionomer volume fraction was found and a gain of 39% in the performance was achieved. As regards the platinum loading and catalyst particle radius, the results showed that a higher loading and a smaller radius leads to an increase in the PEMFC performance. Further, the influence of the electrochemical active area produces an overall increase of 22% in current density and this was due to the use of a new material developed as support for Pt particles, an iodine doped graphene, which has better electrical contacts and additional pathways for water removal. Using this parameter, the numerical model has been validated and good agreement with experimental data was achieved, thus giving confidence in the model as a design tool for future improvements of the catalyst structure

    PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers

    Get PDF
    A numerical model for a PEM fuel cell has been developed and used to investigate the effect of some of the key parameters of the porous layers of the fuel cell (GDL and MPL) on its performance. The model is comprehensive as it is three-dimensional, multiphase and non-isothermal and it has been well-validated with the experimental data of a 5 cm2 active area-fuel cell with/without MPLs. As a result of the reduced mass transport resistance of the gaseous and liquid flow, a better performance was achieved when he GDL thickness was decreased. For the same reason, the fuel cell was shown to be significantly improved with increasing the GDL porosity by a factor of 2 and the consumption of oxygen doubled when increasing the porosity from 0.40 to 0.78. Compared to the conventional constant-porosity GDL, the graded-porosity (gradually decreasing from the flow channel to the catalyst layer) GDL was found to enhance the fuel cell performance and this is due to the better liquid water rejection. The incorporation of a realistic value for the contact resistance between the GDL and the bipolar plate slightly decreases the performance of the fuel cell. Also the results show that the addition of the MPL to the GDL is crucially important as it assists in the humidifying of the electrolyte membrane, thus improving the overall performance of the fuel cell. Finally, realistically increasing the MPL contact angle has led to a positive influence on the fuel cell performance

    The effects of cathode flow channel size and operating conditions on PEM fuel performance: A CFD modelling study and experimental demonstration

    Get PDF
    A comprehensive 3D, multiphase, and nonisothermal model for a proton exchange membrane fuel cell has been developed in this study. The model has been used to investigate the effects of the size of the parallel-type cathode flow channel on the fuel cell performance. The flow-field plate, with the numerically predicted best performing cathode flow channel, has been built and experimentally tested using an in-house fuel cell test station. The effects of the operating conditions of relative humidity, pressure, and temperature have also been studied. The results have shown that the fuel cell performs better as the size of the cathode flow channel decreases, and this is due to the increased velocity that assists in removing liquid water that may hinder the transport of oxygen to the cathode catalyst layer. Further, the modelled fuel cell was found to perform better with increasing pressure, increasing temperature, and decreasing relative humidity; the respective results have been presented and discussed. Finally, the agreement between the modelling and the experimentally data of the best performing cathode flow channel was found to be very good

    PEM fuel cell geometry optimisation using mathematical modeling

    No full text
    There have been extensive efforts devoted to proton exchangemembrane (PEM) fuel cell modeling and simulations to study fuel cellperformance. Although fuel cells have been successfully demonstrated inboth automotive and stationary power applications, there are numeroustechnical and logistic issues that still have to be solved, such asperformance, cost, and system issues. A model based on steady,isothermal, electrochemical, three-dimensional computational fluiddynamics using the FLUENT CFD software package has been developedto predict the fluid flow pattern within a PEMFC. Three types of flow field areinvestigated with serpentine, parallel or spiral channels in order todetermine the best configuration for the fuel cell performance. In thiscontext, the paper presents the results that we have obtained and, as aconclusion of the simulations, we have achieved the best configurationregarding the performance for the fuel cell with serpentine channels. Weconsider the mathematical and computational modeling as an importantalternative for fuel cell optimization and for the exploitation/experimentationin cost reduction

    Effects of geometrical dimensions of flow channels of a large-active-area PEM fuel cell: A CFD study

    No full text
    Various flow field designs have been numerically investigated to evaluate the effect of pattern and the cross-sectional dimensions of the channel on the performance of a large active area PEM fuel cell. Three types of multiple-serpentine channels (7-channels, 11-channels and 14-channels) have been chosen for the 200 cm2 fuel cell investigated and numerically analysed by varying the width and the land of the channel. The CFD simulations showed that as the channel width decreases, as in the 14-channels serpentine case, the performance improves, especially at high current densities where the concentration losses are dominant. The optimum configuration, i.e. the 14-channels serpentine, has been manufactured and tested experimentally and a very good agreement between the experimental and modelling data was achieved. 4 channel depths have been considered (0.25, 0.4, 0.6 and 0.8 mm) in the CFD study to determine the effects on the pressure drop and water content. Up to 7% increase in the maximum reported current density has been achieved for the smallest depth and this due to the better removal of excess liquid water and better humidification of the membrane. Also, the influence of the air flow rate has been evaluated; the current density at 0.6 V increased by around 25% when air flow rate was increased 4 times; this is attributed to better removal of excess liquid water

    Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution

    No full text
    The goal of the review series on the H2 economy is to highlight the current status, major issues, and opportunities associated with H2 production, storage, transportation, distribution and usage in various energy sectors. In particular, Part I discussed the various H2 (grey and green) production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications. Part II of the H2 economy review identifies the developments and challenges in the areas of H2 storage, transportation and distribution with national and international initiatives in the field, all of which suggest a pathway for establishing greener H2 society in the near future. Currently, various methods, comprising physical and chemical routes are being explored with a focus on improving the H2 storage density, capacity, and reducing the cost. H2 transportation methods by road, through pipelines, and via ocean are pursued actively in expanding the market for large scale applications around the world. As of now, compressed H2 and its transportation by road is the most realistic option for the transportation sector.Peer reviewe
    corecore