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Abstract 
The effect of the catalyst microstructure on a 5 cm2 PEM fuel cell performance is numerically 

investigated. The catalyst layer composition and properties (i.e. ionomer volume fraction, platinum 
loading, particle radius, electrochemical active area and carbon support type), and the mass transport 
resistance due to the ionomer and liquid water surrounding the catalyst particles, are incorporated into 
the model. The effects of the above parameters are discussed in terms of the polarization curves and 
the local distributions of the key parameters. An optimum range of the ionomer volume fraction was 
found and a gain of 39% in the performance was achieved. As regards the platinum loading and 
catalyst particle radius, the results showed that a higher loading and a smaller radius leads to an 
increase in the PEMFC performance. Further, the influence of the electrochemical active area 
produces an overall increase of 22% in current density and this was due to the use of a new material 
developed as support for Pt particles, an iodine doped graphene, which has better electrical contacts 
and additional pathways for water removal. Using this parameter, the numerical model has been 
validated and good agreement with experimental data was achieved, thus giving confidence in the 
model as a design tool for future improvements of the catalyst structure. 

Keywords: PEM fuel cell; numerical model; catalyst microstructure; ionomer volume fraction; 
platinum loading; electrochemical active area.  

 
1. Introduction 

 
Proton Exchange Membrane (PEM) Fuel Cells are promising power conversion technologies 

for automotive and stationary backup applications and this is mainly due to their high power density 
and low temperature operation (<100 °C). An essential part in the PEM fuel cells development and 
commercialization is the use of an appropriate catalyst that meets certain requirements: high 
performance, low cost and high durability. The noble metals (platinum) are commonly used as 
catalysts due to their high chemical stability and high exchange current density, but because they are 
expensive and can be easily poisoned then alternatives would be advantageous. Developing new 
electrodes with reduced load or no platinum is still a topic of great scientific interest and, therefore, 
further numerical and experimental studies are still necessary to fulfil this goal [1-3]. 

PEM Fuel Cells are electrochemical devices that convert the chemical energy of a fuel and 
oxidant directly to electric energy, with heat and water as by-products. The electrochemical reactions 
take place in the catalyst layers (CL). At the anode catalyst the hydrogen molecules separate into 
protons and electrons. The protons flow through the electrolyte to reach the cathode side and the 
electrons flow through an external circuit and generate electric power. At the cathode catalyst the 
supplied oxygen combines with the protons and electrons and generate water and heat. For promoting 
these reactions, the catalyst layers must have a high active surface area and an adequate microstructure 
to allow for the transport of reactants, ions, electrons and by-products. The catalyst layer 
microstructure can be described as a group of agglomerates that consists of four different elements: 
carbon particles, Pt particles, an ionomer network and pores, see Fig. 1. Each of these phases play an 
important role in the key processes occurring within the entire fuel cell, starting from the diffusion of 
gases through pores and in the ionomer film; from the water absorption by the ionomer or water 
diffusion back to the pore; from proton and electron transfer through the ionomer film and 
carbon/platinum, respectively; up to the heat transfer from the reaction site towards the gas channel 
[4]. Some critical factors, such as: mass transport resistance caused by the ionomer and liquid water 



 

 

films surrounding the catalyst particles, Pt loading, Pt and carbon particle sizes, ionomer volume 
fraction and CL porosity, must be considered when the PEM fuel cell performance and durability are 
being evaluated [5-8].  

The catalyst layer is a group of agglomerates that creates a porous network. The size of each 
agglomerate is about 200 nm [9-10]. There is void space inside each agglomerate, called primary 
pores (< 20 nm), and void space between agglomerates, called secondary pores (>20 nm). The 
primary pores include micropores (<2 nm) that can be blocked by Pt particles [11-12] and mesopores 
(2-20 nm) that are partially occupied by the ionomer [13]. The secondary pores are relatively large 
and are available for gas transport.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – Schematic of the PEM fuel cell components with a zoom of the catalyst layer 

microstructure. 
 
One way to investigate the influence of the catalyst microstructure on the PEM fuel cell 

performance is through performing numerical simulations. There are three different categories of 
models that can be used to account for the catalyst layer: thin-film [14-15], macro-homogeneous [16-
17] and agglomerate models [18-21]. A comparison of these models [22] shows that the catalyst 
agglomerate model is the only model that is capable of capturing all the mass transport losses; the 
thin film and the macro-homogeneous models overpredict the fuel cell performance. This is because 
the use of a thin film for the catalyst layer prevents considering any kind of transport or resistance in 
the physical structure of the catalyst layer. On the other hand, the macro-homogeneous model does 
not consider the formation of agglomerates. Therefore no reactant dissolution at the gas/ionomer 
interface, nor diffusion and reaction within the agglomerate structure are taken into account. The 
agglomerate model includes all possible transport phenomena that takes place into the CL such us: 
gas-phase transport in the pore space of the catalyst layer; dissolution of reactants in the electrolyte 
phase; simultaneous diffusion and reaction of the dissolved reactant within the agglomerate; ion 
transport in the electrolyte phase; and electron conduction via the carbon black particles. 

A key factor that determines both the electrocatalytic activity and the durability of carbon 
supported Pt electrocatalysts used in PEM fuel cells is related to the Pt loading and Pt particle size. 
The goal of the research carried out in developing catalysts for PEM fuel cells is to reduce the 
platinum loading to 0.125 mg/cm2 or even to lower values by 2020 [23]. High platinum loadings lead 
to a fast reaction rate for the oxygen reduction reaction due to the additional catalytic surface area 
provided. If  Pt loading is to be reduced, it is necessary to keep the high catalyst active surface area 
and one way to achieve this is to reduce the platinum particle size [24-25]. Analyzing the effect of 
the Pt particle size on the activity for ORR have been reported in several papers [5, 20, 27-29]. An 
optimum Pt particle size of 4 nm for the maximum ORR mass activity was found by Peuckert et al. 

 



 

 

[26] and a significant decrease in performance when reducing the particle size to 1 nm. These results 
are in good agreement with the findings of Malek et al. [12] who suggest a range between 2-5 nm for 
maximum ORR mass activity; such particle size was used as a fitting parameter for the respective 
mathematical models. Soboleva et al. [11] found that the distribution of Pt particles is dependent on 
the porous structure of the carbon support. In another work [50] no Pt particle size effect was noticed 
even if the radius decreased to 1.4 nm. These contradictory results leads to the conclusion that a 
comprehensive investigation for evaluating the effect of catalyst layer microstructure on the PEM 
fuel cell performance is still required. 

Another important parameter in evaluating the PEM fuel cell performance is the ionomer 
volume fraction of the CL. The ionomer network acts as a pathway for protons in reaching the reaction 
sites and as a diffusive medium for the oxygen gas. Different values for the ionomer content have 
been investigated and an optimum ionomer volume fraction of the electrodes that offer an increased 
PEM fuel cell performance was found [29-31]. The ionomer is a binder for the Pt and carbon particles; 
therefore, each of these components must be analyzed. Carbon based materials are used as catalyst 
support for the dispersed Pt particles and for conducting the electrons to the reaction sites, the carbon 
black being the most commonly used. A mesoporous carbon substrate with the pore diameters in the 
range 2-20 nm is considered adequate for placing the Pt particles because it allows a better mass 
transfer and have optimum properties (good electrical and thermal conductivity, and high porosity) 
[32]. If the carbon support has micropores (<2 nm), the Pt particles can block the entrance of these 
micropores, thus cancelling the effect of the pores. In this case the micropores are considered active 
sites for platinum deposition without contributing to the improvement of the fuel cell performance 
[11]. An improved support based on nanostructured carbon can be used to replace the usual carbon 
black supports and graphene is a promising material that can be used due to its unique two-
dimensional structure and extraordinary properties (high electronic and thermal conductivity, high 
surface area and high mechanical strength). The research carried out in the last few years by our group 
[33,51-53] and others [34-36] on the use of graphene based materials as catalyst layers for PEM fuel 
cells have demonstrated that a better performance can be achieved due to an increased electrochemical 
active area and this is due to more platinum sites being available for oxygen reduction reaction. The 
performance improvement is also due to the graphene structure which benefits from a large number 
of vacancies and mesopores that offer new channels for reactant and product transport, and ensures 
conductive paths for the ions and electrons.  

Since all these parameters can influence each other, a sensitivity analysis to investigate the 
effect of the catalyst layer microstructure on the PEM fuel cell performance is required. A CFD model 
was developed and numerical simulations were carried out in order to investigate the effects of Pt 
loading, Pt particle radius, ionomer volume fraction, and carbon support on the PEM fuel cell 
performance. The results are presented in terms of polarization curve plots and profile distributions 
of the key variables (current density, species, water content and liquid water) and discussed. By 
optimizing the catalyst layer composition, the performance of the catalyst layer can be improved and 
also its durability may be increased. 

 
2. Mathematical Model Development 
 
The fuel cell model is based on the conservation of mass, momentum, species, charge and 

energy [37]. These transport equations are coupled with electrochemical processes through source 
terms. The mathematical modelling is based on a previously developed model [38], assuming: 3┽
dimensional investigation, operation under steady state conditions, incompressible and laminar flow 
for the fuel and air. A comprehensive two-phase model for PEM fuel cells must account for the 
modelling transport of all three water phases (gaseous, liquid and dissolved). Also, the mass transport 
resistance due to the catalyst microstructure, the liquid water transport through hydrophobic porous 
layers and the two-phase flow (liquid saturation) in the gas channels must be considered and are taken 
into account in the proposed model, being incorporated in the cathode particle model presented in 
Section 2.1.  



 

 

Additional assumptions are employed in this study in order to take into account the 
microstructure of the catalyst layers [10, 28, 39]: 

- the catalyst layer is assumed to be formed of spherical agglomerates that consist in platinum 
dispersed carbon, ionomer and void.  

- the primary pores, which exist inside each agglomerate, are completely filled with ionomer, 
allowing for dissolved oxygen diffusion and proton transfer. 

- the secondary pores, formed between the agglomerates within the CL, are partially occupied 
by the ionomer and liquid water.  

The following parameters have been considered in developing the model: 
 Liquid water saturation, s, is the volume fraction of the secondary pores filled with liquid 

water 
 Platinum loading and carbon loading are denoted by Ptm and Cm , respectively 

 The Pt, C and ionomer volume fractions in the CL are denoted by 綱牒痛, 綱寵 and 綱朝┸寵挑 
 The GDL penetration into the CL due to the fuel cell assembly is accounted for as a volume 

fraction, 詣弔帖挑┸寵挑 
 The CL thickness is denoted by

CL
 . 

  
2.1 The Cathode Particle Model 

 
In the governing equations associated with the mass transport resistance due to the catalyst 

microstructure, the possible interactions with all water phases are taken into account in the proposed 
model by replacing the general formulation of the Butler-Volmer function for computing the 
exchange current density with the Eqs. (1) - (4) [40]. 

The exchange current density inside the cathode catalyst is one of the most important 
parameters in defining the electrochemical reaction kinetics because it contains information related 
to the catalytic activity of the Pt catalyst and to the CL morphology (electrochemical active Pt surface 
area (ECSA), particle radius), being the link between the macroscopic electrochemical model and the 
CL microstructure. Therefore, the exchange current density in the cathode catalyst is not based on the 
general formulation of the Butler-Volmer function [37], but it is calculated using the Eqs. (1) - (4) 
[40]. It can be noticed that the electrochemical behavior depends on the amount of liquid water 
produced inside the porous CL structure, on the Pt particle radius and on the ionomer resistance. 
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where ionR  is the resistance due to an ionomer film, given from experiments [41], 

2Oc is the 

concentration of oxygen, idea l
Oj 2

 is the ideal transfer current computed using the Butler-Volmer 

formulation [37] without any resistance, liqR  is the resistance due to the liquid water film surrounding 

the catalyst particles, 耕頂岫陳鍋禰鉄陳頓薙典 岻 is the specific active surface area for the catalyst, CL  is the catalyst 

layer porosity, pr  is the particle radius (m) and ww DK  (m2/s) accounts for the oxygen solubility and 

diffusivity in the liquid water. The specific active surface area of the catalyst, 耕頂, is related to the 
electrochemical active surface (欠帳寵聴凋 (m2/g)) and to the Pt loading (兼牒痛 (g/m2)) [41] by:  



 

 

 耕頂 噺 岫欠帳寵聴凋 ゲ 兼牒痛岻 絞寵挑エ          (5)
        

The Pt particle radius, 堅椎 岫兼岻, is given by the following expression [6]:  
 堅椎 噺 ぬ 岫貢牒痛 ゲ 欠帳寵聴凋岻エ          (6) 
 

2.2 Algebraic equations for phase composition 
 

The catalyst layer porosity is determined taking into account its composition: platinum 
dispersed carbon, ionomer and void [28]:  

 綱寵挑 噺 な 伐 綱朝┸寵挑 伐 詣弔帖挑┸寵挑 ゲ 岫な 伐 綱弔帖挑岻 伐 綱牒痛 伐 綱寵     (7) 
 綱牒痛 噺 兼牒痛 岫絞寵挑 ゲ 貢牒痛岻エ          (8) 
 綱寵 噺  兼牒痛 ゲ 岫な 伐 血岻【岫血 ゲ 絞寵挑 ゲ 貢寵岻       (9) 
 血 噺 兼牒痛 岫兼牒痛 髪 兼寵岻エ          (10) 

 
where 貢牒痛, 貢寵 and 貢朝 are the Pt, carbon and ionomer/nafion densities and 血 is the platinum mass 
loading to that of platinum and carbon.   

 The catalyst microstructure parameters detailed in Sections 2.1 and 2.2 are integrated into the 
PEM fuel cell model developed in our previous study [38] and used to investigate the effect of various 
structural parameters on the PEM fuel cell performance.  

  
3. Numerical Implementation and boundary conditions 
 
The commercial CFD software ANSYS Fluent 17.0 was used in the numerical investigation 

[42]. For all the simulations, a set of parameters and operating conditions has been specified as the 
base case, see Table. Also, all the numerical calculations are performed under the appropriately 
specified boundary conditions in order to ensure the uniqueness of the governing partial differential 
equations solution. Dirichlet boundary conditions for the mass flow rate, temperature, relative 
humidity and mass fractions were prescribed for the channel inlets; see Table 2. On the lateral walls, 
the solid phase potential was set to be 0 V at the anode side and a value between 0 V and the open 
circuit voltage at the cathode side.  

Since a single computational domain is used, the continuity in the fluxes of all the variables at 
the interfaces between all the components of the model is ensured. The coupled set of governing 
equations is iteratively solved until a converged solution is obtained (when the difference between 
two consecutive residuals is less than 10-6 and the difference between the current produced in the 
anode CL and cathode CL is less than 10-4. The computations were performed using parallel 
processing of ANSYS Fluent with 32 processes shared on 2 workstations, each with two 8┽ core 
processors of 2.6 GHz and 64 GB of RAM. Based on these high┽ performance computing 2 hours 
were required for simulating 1 point of the polarization curve. 

 
Table 1. The parameters used in the base case of the model. 

  Parameter Value Unit                                
Porosity of GDL/MPL/CL 0.7/ /0.6/0.5 - 
Permeability of GDL/MPL/CL (K) 3×10-12/1×10-12/2×10-13 m2 
Reference exchange current density at anode (ref

aj )  3000 A/m2 



 

 

Reference exchange current density at cathode (ref
cj ) 0.3 A/m2 

H2 molar concentration (ref
Hc

2
)  54.6×10-3 kmol/m3 

O2 molar concentration (ref
Oc

2
)  3.39×10-3 kmol/m3 

Anodic transfer coefficient (a)  1 - 

Cathodic transfer coefficient  (c) 0.8 - 

Contact angle GDL/MPL/CL (c ) 110/130/95 び  

Anode/cathode specific surface area (耕頂) calculated 兼牒痛態 兼寵挑戴エ  

Weight fraction of platinum in Pt/C (血) 0.2 - 

Platinum mass loading 岫兼牒痛岻 2 g/m2 

Ionomer volume fraction in CL (綱朝┸寵挑) 15 % 

Open circuit voltage (Voc) 0.938 V 
Membrane thickness 56 µm 
GDL thickness 350 µm 
MPL thickness 50 µm 
Catalyst layer thickness 5.4 µm 
Liquid water diffusion coefficient ( liqD ) 1×10-5 m2/s 

Dry membrane density (i ) 2000 kg/m3 
Equivalent weight of the membrane (EW ) 1100 kg/kmol 

 

Table 2 The boundary conditions used in the model. 
  Parameter Value Unit                                

Mass flow rate at anode inlet 8×10-7 kg/s 

Mass flow rate at cathode inlet 8×10-6 kg/s 

Mass fraction for H2 at anode inlet  0.475 - 

Mass fraction for H2O at anode inlet 0.525 - 

Mass fraction for O2 at cathode inlet 0.242 - 

Mass fraction for H2O at cathode inlet
  

0.0699 - 
 

Relative humidity at anode/cathode inlets  56 % - 

Temperature at anode/cathode inlets 60 °C 

 

The computational domain presented in Fig. 2 was developed using the Gambit® 2.4.6 
software, the mesh developed having about 1.1 million hexahedral cells and being refined until mesh-
independent solutions were obtained. The 5 cm2 geometry design of the fuel cell numerically 
investigated is based on the dimensions of a real fuel cell. The same configuration of the flow fields 
in the anode and cathode sides, namely a 3┽ pass serpentine, have been used in our numerical and 
experimental investigations. Each gas channel has 0.5 mm width and 0.5 mm depth. In the area where 
the parallel channels connects each other a different depth of 1 mm is used. The bipolar plate is 22.5 
mm × 22.5 mm in x and y – directions and its thickness is 1.5 mm.  

 



 

 

 
 

Fig. 2 – Sketch of the PEM fuel cell geometry with the mesh developed. 
 

 
4. Results and Discussions 

 
A numerical investigation for a 5 cm2 PEM fuel cell is presented and the performance results 

with a variable microstructure of the CL (Pt particle diameter, ionomer volume fraction, specific 
surface area) are reported. It is well known that platinum is by far the most effective element used for 
PEM fuel cell catalysts, and nearly all current PEM fuel cells use platinum particles on porous carbon 
supports to catalyze both hydrogen oxidation and oxygen reduction reactions. The main goal in 
studying the PEMFC catalysts is to maximize the surface area and minimize the loading, and one way 
to achieve this is by optimizing the size and shape of the platinum particles. The present study gives 
an insight into the catalyst microstructure influence on PEM fuel cell performance.  

 
4.1 Model Validation 
 
The validation of the numerical model, including the catalyst microstructure, was achieved by 

comparing its prediction against previously obtained experimental data using a 5 cm2 PEM fuel cell 
from ElectroChem [33]. Two of the four cases analyzed in the experimental investigation are used 
for model validation, namely: a fuel cell with the same anode catalyst, Pt/C with 0.2 mg/cm2 Pt 
loading, and a modified cathode catalyst: (Case 1) one CL with usual Pt/C having 0.2 mg/cm2 Pt 
loading and (Case 2) one CL with mixed Pt/iodine-doped graphene obtained by spraying 0.2 mg/cm2 
Pt on the membrane and 0.2 mg/cm2 iodine doped graphene on GDL. The cathode catalyst layers 
obtained have different electrochemical active areas (欠帳寵聴凋) leading to different microstructure 
properties. The electrochemical active area measurements were performed by cyclic voltammetry and 
revealed a value for 欠帳寵聴凋 for the mixed catalyst (Case 2) between 82 and 90 m2/g when the 
temperature is increasing from 60°C to 90 °C, which is 3 times higher than the commercial Pt/C 
catalyst from the Case 1 (35 - 38 m2/g at 60 - 90°C). The value for 欠帳寵聴凋 set up in the numerical 
investigation is 37 m2/g for the Case 1 catalyst and 87 m2/g for the Case 2 catalyst. Using Eq. (6) and 
the catalyst properties, we determine the radius of the Pt particles as 3.78 nm for Case 1 and 1.61 nm 
for Case 2. The porosity of the catalyst layer calculated using Eqs. (7-10) and the base case conditions 
(Table 1) is 0.5. Based on these properties, we have performed numerical simulations and 
experimental tests and the electrochemical performances were recorded as polarization curves 
(experiments) and dots (CFD simulations), see Fig. 3. The CFD results were plotted as dots since a 
simulation was run for every potential difference value set up between the anode and the cathode. 
The polarization curves from the experiments were recorded using an in-house test station, which 
includes an electrochemical workstation, fuel cell (ElectroChem, USA), DS electronic load 



 

 

(AMETEK Sorensen SLH 60V/120A 600 W), and humidifier (ARBIN DPHS 10, USA). The 
operating conditions listed in Table 2 have been used in both the numerical and experimental tests. 
The flow rates of the reactants in the experimental work were adjusted using flow controllers (Alicat 
Scientific, USA) and bubble-type humidifier were installed to ensure the necessary humidification. 

  

 
 

Fig. 3 - Validation of the CFD results with experimental data. 
 
A good agreement between the experimental data and the CFD results have been obtained. It 

can be noticed that an overall increase in performance of 22 % was achieved by using iodine doped 
graphene as support for Pt particles and this is due to better electrical contacts and additional pathways 
for the water removal that have been established. More information about the effect of the carbon 
support over the PEM fuel cell performance is given in Section 4.2.3. This support based on graphene 
leads to an increase in the performance in ohmic and concentration polarization regions. At the same 
time, the higher electrochemical active area, 欠帳寵聴凋, from the Case 2 suggests that more platinum sites 
are available for the oxygen reduction reaction from the cathode catalyst [33], which leads to a better 
performance of the fuel cell. 

In the second stage of the model validation, we have compared the polarization curves obtained 
using the model both with and without taking into account the catalyst layer microstructure (CPM- 
Cathode Particle Model) and the simulations were carried out for a potential difference between 
0.938V, the open circuit voltage, and 0.3V, for capturing the mass transfer losses. Thus, we have 
compared the agglomerate model developed with the simplified homogeneous model, and the results 
are presented in Fig. 4. As expected, the homogenous model (w/o CPM) overestimates the 
performance since it does not account for the effect of the mass transport limitation at the agglomerate 
scale [43], and this result is in agreement with several numerical works [10, 12, 18]. To analyze the 
differences from the models investigated and how the fuel cell performs locally in each case, we have 
plotted the oxygen and water mass fractions profiles, and the results are presented in Figs. 5 and 6. It 
can be noticed that the homogeneous model does not capture the diffusion of the dissolved oxygen 
nor the water generation, as in the case of the agglomerate model. These gas transport issues are 
known as concentration losses, both causing the decrease in the PEM fuel cell performance. The 
generated water captured by the agglomerate model blocks the pores in the catalyst layer so that 
reactant gases cannot access the active catalyst sites, hence the drop in the cell voltage. 
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Fig. 4 – Voltage as a function of the current density for the model with and without CL 

microstructure. 
 

 

 
(a)                                              (b) 

 

Fig. 5 - Oxygen mass fraction profile for the model (a) without CL microstructure, and (b) 
with CL microstructure at 0.3V potential difference. 

 

 

 
(a)                                          (b) 

 

Fig. 6 - Water mass fraction profile for the model (a) without CL microstructure, and (b) with 
CL microstructure at 0.3V potential difference. 
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4.2 Effect of the cathode microstructure and composition 
 
In this work we investigate the effect of the following parameters over the PEM fuel cell 

performance, namely: ionomer volume fractions in the CL (綱朝┸寵挑岻, platinum loading ( Ptm ), platinum 

particle radius (堅椎) and carbon support. The results were plotted as polarization curves and as profile 
distributions for the key variables. Since the PEM fuel cell operates at 0.7-0.6 V, the 0.6 V has been 
chosen as a potential difference for displaying the profiles, unless otherwise specified.   

 
4.2.1 Ionomer volume fraction 
The ionomer is added to maintain the hydrophobicity and to bind all the components in the CL 

and this has an important role in obtaining a good performance of the PEM fuel cell due to its 
influence on the proton conductivity, gas transport, water management and electron transport. Various 
ionomer volume fractions have been considered in the study, leading to 6 compositions for the CL. 
Using the model developed and the base case boundary conditions, the effect of the ionomer volume 
fraction on the performance was presented in Fig. 6. Increasing the amount of ionomer in the CL, up 
to 55%, leads to a better performance in the ohmic and concentration regions of the polarization 
curves. This improvement is due to the fact that the ionomer acts as a network for the mass and charge 
transport. Increasing the volume fraction of the ionomer above this value leads to a sharp decrease in 
the catalyst layer porosity (綱寵挑 隼 ど┻な) and hence increase the oxygen mass transport resistance to 
reach the electrochemical active sites and ultimately leads to the drop in the performance.  

 
 

Fig. 7 - Polarization curves for different ionomer volume fractions (資錆┸察鯖). 
 

To establish the optimum value of the ionomer volume fraction, the current density versus 
ionomer volume fraction have been plotted for all cases investigated at 0.6 V and the results are 
displayed in the inset plot in Fig. 7. It must be noted that the optimum ionomer volume fraction is the 
value at which the maximum current density is obtained. It can be observed that there is an optimum 
range for the ionomer volume fraction, between 45% and 55 %, with the maximum current density 
0.83A/cm2 at 55 %. Sun et al. [44] reported an optimal ionomer volume fraction in CL at ~50%; this 
result was validated experimentally and is in agreement with the present results. To verify the trend 
predicted by the model, and due to the fact that there is a decrease in performance (when the ionomer 
volume fractions is above the optimum value) taking place in the mass transport region of the 
polarization curve, we have plotted the local distributions of the water content at 0.4V. Water content 
is the most important variable in investigating the PEM fuel cell performance as almost all property 
expressions from the CFD model depend on it [38]. As can be seen in Fig. 8, a gradual increase of 
water content along the channels takes place due to the reactant gas saturation with the water 
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generated by the cathode electrochemical reaction, for all cases investigated. According to Fuller et 
al. [45] a completely hydration of the ionomer takes place when the maximum value of the water 
content is 14, this being the case of a fully saturated vapor phase. In the case of the liquid phase, the 
maximum value of the water content is 22. If  water content is over 14, it is assumed that the flooding 
phenomenon occurs [46-48]. Excess of ionomer volume fraction (58% case) leads to a maximum 
water content of 16.2 as compared to the other cases where the maximum are 12.64 (15% case), 13.9 
(35% case) and 15.2 (55% case). It can be noticed that for all cases investigated, the maximum value 
is near the outlet. To verify the flooding phenomena, the liquid water saturation is plotted in Fig. 9. 
It can be noticed that the largest value of the liquid water saturation appears in the corner close to the 
exit and that an ionomer volume fraction above the optimum can leads to pore filling with water and 
consequently to other detrimental effects for the PEM fuel cell performance, such as: blocking the 
gas diffusion passages, hindering the reactant gases to reach the active sites and decreasing the 
diffusion rate. These mass transport losses cause the decrease in the fuel cell performance, as 
presented in the polarization curves from Fig. 7.  

 

 
(a)                                 (b)                                     (c)                                 (d) 

 
Fig. 8 - Water content profile in the cathode catalyst layer 

for different ionomer volume fractions at 0.4 V: (a) 15 %, (b) 35 %, (c) 55 % and (d) 58%. 
 

 
(a)                                    (b)                                  (c)                                 (d) 
 

Fig. 9 - Liquid water saturation profile in the cathode catalyst layer 
for different ionomer volume fractions at 0.4 V: (a) 15 %, (b) 35 %, (c) 50 % and (d) 58%. 

 
4.2.2 Platinum loading and particle radius  
The effect of Pt loading and particle radius are taken into account in our investigation because 

they are the key parameters in improving the electrocatalytic activity and the overall performance of 



 

 

the PEM fuel cell. Since a platinum supported on carbon catalyst (Pt/C) is formed by a mix of 
nanometer-sized platinum particles dispersed on a high surface area carbon, ionomer and voids, it is 
important to establish the influence of each component on the overall performance of the fuel cell. 
Regarding the platinum loading, the current trend in developing catalyst layers for PEM fuel cells is 
to reduce it to 0.125 mgPt/cm2 or to lower values [23], but at the same time keep the specific active 
surface area at high values. One way to achieve this goal is by decreasing the size of the platinum 
particles. In this context, taking into account the model developed, the platinum loading was varied 
between 0.5 and 4 gPt/m2 and the platinum particle radius between 2 and 5.5 nm. Fig. 10 (a) presents 
the fuel cell performance recorded in terms of current density by taking into account two ionomer 
volume fractions: the base case (15%) and the optimized case (55 %). It can be noticed that there is 
an increase in current density for the optimized case of about 28 % as compared to the base case. 
Further, the profiles for oxygen mass fractions are displayed in Fig. 10 (b)-(e) for the optimized 
ionomer volume fraction case and using 4 different platinum loadings: 0.05, 1, 2 and 4 gPt/m2. The 
profiles are displayed at the interface between the cathode catalyst layer and the membrane. The 
oxygen supplied at the cathode channel inlet, see Table 2, and diffuses through the porous layers of 
the PEM fuel cell to reach the catalyst layer where the electrochemical reactions occur, leading to the 
oxygen consumption. By using a high platinum loading it can be seen that there is a fast reaction rate 
for the oxygen reduction reaction and this is due to the additional catalytic surface area provided, as 
stated by Eq. (5). Hence, a better performance of the fuel cell is obtained, see Fig. 10 (a).  

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Platinum mass loading influence on current density (a) and 
 oxygen mass fraction in the CL at 0.6V for optimized ionomer content (55%) for: 

 (b) 0.5 gPt/m2, (c) 1 gPt/m2, (d) 2 gPt/m2 and (e) 4 gPt/m2. 
 
Fig. 11 (a) presents the influence of the platinum particles radius over the current density; a 

decrease in fuel cell performance can be noticed as the radius increases. Essentially, smaller particles 

(a) 

(b) (c) (d) (e) 



 

 

pose smaller resistance to mass transport at the local scale as can be seen in Fig. 11 (b)-(e), where the 
current density profiles for various particle radius are plotted at the interface between the cathode 
catalyst layer and the membrane. These results are in agreement with the results from several papers 
[12, 29] that have reported a range between 2 and 5 nm for obtaining a maximum ORR mass activity 
and a better performance of the fuel cell. A significant loss in the performance takes place, around 
25%, on increasing the radius of the platinum particles from 1.61 nm to 5.5 nm.  

The Pt particle size effect on ORR has been widely investigated since 1990 [54] and yet there 
are several discrepancies in the results, due to different types of electrolytes used in measurements, 
different electrocatalyst support or experimental conditions [21, 26, 31, 55-57]. A thorough 
investigation is required to systematically establish the influence of catalyst microstructure and 
associated parameters on the PEM fuel cell performance. However, decreasing the particle size results 
in an increased number of sites available on the surface of the catalyst and leads to a larger 
electrochemical surface area, as shown in Eq. (6). The correlation between the Pt particle size, the 
catalytic activity and the current density can be seen in Fig. 11 (a) and Fig. 12, where a smaller Pt 
particle means a higher electrochemical active area and consequently a better performance of the 
PEM fuel cell. This is in accordance with virtually all the findings of the previous similar studies [17, 
24-25, 28]. 

 

 
Fig. 11 - The effect of Pt particle radius on (a) average current density and  

on current density profile for: (b) 1.83nm, (c) 2.45 nm, (d) 3.78 nm and (e) 5.5 nm. 
 
4.2.3 Specific surface area and carbon support 
The electrochemical active surface of the catalyst, 欠帳寵聴凋, and the radius of platinum 

particles, 堅椎, are correlated according to Eqs. (5-6). The platinum particles are dispersed on the surface 
of the catalyst support, typically carbon powder (~40 nm) with high meso-porous area (>75m2/g) 
[49]. In the last few years, much attention has been paid to finding new catalyst supports and among 
these carbon materials, graphene has been considered as an excellent support material. Such a 
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(b) (c) (d) (e) 



 

 

graphene based support has been developed previously by our group [33, 51-53] and investigated 
experimentally [33]. The numerical and experimental results of PEM fuel cell testing using this 
catalyst layer and a conventional Pt/C catalyst has been compared in the Section 4.1. The use of  
iodine-doped graphene as carbon supports in PEM fuel cells has been previously investigated 
experimentally and numerically [51-53];  the ex-situ and in-situ tests have proven that they are 
promising materials for PEM fuel cell technology.  It must be mentioned that the electrochemical 
active area,欠帳寵聴凋, of the above catalysts, was determined by cyclic voltammetry.  

To investigate further the effect of the electrochemical active area of the catalyst over the fuel 
cell performance, we have varied this parameter between 37 m2/g, obtained for the conventional Pt/C 
catalyst, and 87 m2/g, obtained for the mixed catalyst. The results are displayed in Fig. 12, and it is 
observed that there is an overall 22 % increase in current density as the electrochemical active area is 
growing. A good agreement between the modelling and experimental data was found, according to 
results presented in Fig. 3. The substrate effect on the oxygen reduction reaction will be further 
investigated in order to obtain a better catalyst. Also, the stability and durability of the catalyst will 
be taken into account in our future work.   

 
 

Fig. 12 - Current density (A/cm2) for various electrochemical active area, 珊撮察傘冊 at 0.6 V.  
 

5. Conclusions 
A parametric study has been conducted to primarily investigate the sensitivity of the 5 cm2 PEM 

fuel cell performance to the catalyst layer microstructure. A numerical analysis based on ANSYS 
Fluent 19.0 has been performed and the results have been validated for one parameter against 
experimental data. The following are the main findings of the study: 

1. A comparison between the model results, both with and without taking into account the 
catalyst microstructure, have been performed. Unlike the agglomerate model, the 
homogeneous model, which ignores the catalyst microstructure, overestimates the fuel cell 
performance in the concentration losses region as it does not accurately capture the depletion 
of oxygen and generation of water. 

2. The effect of the cathode microstructure (ionomer volume fraction platinum loading, 
platinum particle radius, electrochemical active area and carbon support type) is discussed in 
the paper and the results are plotted as graphs or profiles for investigating their influence over 
the fuel cell performance. An optimum range for the ionomer volume fraction was found. A 
higher platinum loading and a lower particle radius are recommended to achieve better PEM 
fuel cell performance. 

3. For one parameter, namely the electrochemical active area 欠帳寵聴凋, the numerical results are 
validated by experimental data and a good agreement was found. Comparing the results of 
two catalysts investigated, an overall increase in performance of 22 % was achieved by using 



 

 

a mixed cathode catalyst, based on iodine doped graphene as support for the Pt particles. This 
is due to better electrical contacts and additional pathways for water removal.  
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