576 research outputs found

    Photon molecules in atomic gases trapped near photonic crystal waveguides

    Full text link
    Realizing systems that support robust, controlled interactions between individual photons is an exciting frontier of nonlinear optics. To this end, one approach that has emerged recently is to leverage atomic interactions to create strong and spatially non-local interactions between photons. In particular, effective interactions have been successfully created via interactions between atoms excited to Rydberg levels. Here, we investigate an alternative approach, in which atomic interactions arise via their common coupling to photonic crystal waveguides. This technique takes advantage of the ability to separately tailor the strength and range of interactions via the dispersion engineering of the structure itself, which can lead to qualitatively new types of phenomena. As an example, we discuss the formation of correlated transparency windows, in which photonic states of a certain number and shape selectively propagate through the system. Through this technique, we show in particular that one can create molecular-like potentials that lead to molecular bound states of photon pairs

    Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model

    Full text link
    The adiabatic quantum evolution of the Lipkin-Meshkov-Glick (LMG) model across its quantum critical point is studied. The dynamics is realized by linearly switching the transverse field from an initial large value towards zero and considering different transition rates. We concentrate our attention on the residual energy after the quench in order to estimate the level of diabaticity of the evolution. We discuss a Landau-Zener approximation of the finite size LMG model, that is successful in reproducing the behavior of the residual energy as function of the transition rate in the most part of the regimes considered. We also support our description through the analysis of the entanglement entropy of the evolved state. The system proposed is a paradigm of infinite-range interaction or high-dimensional models.Comment: 8 pages, 7 figures. (v2) minor revisions, published versio

    Adiabatic quantum dynamics of a random Ising chain across its quantum critical point

    Full text link
    We present here our study of the adiabatic quantum dynamics of a random Ising chain across its quantum critical point. The model investigated is an Ising chain in a transverse field with disorder present both in the exchange coupling and in the transverse field. The transverse field term is proportional to a function Γ(t)\Gamma(t) which, as in the Kibble-Zurek mechanism, is linearly reduced to zero in time with a rate τ1\tau^{-1}, Γ(t)=t/τ\Gamma(t)=-t/\tau, starting at t=t=-\infty from the quantum disordered phase (Γ=\Gamma=\infty) and ending at t=0t=0 in the classical ferromagnetic phase (Γ=0\Gamma=0). We first analyze the distribution of the gaps -- occurring at the critical point Γc=1\Gamma_c=1 -- which are relevant for breaking the adiabaticity of the dynamics. We then present extensive numerical simulations for the residual energy EresE_{\rm res} and density of defects ρk\rho_k at the end of the annealing, as a function of the annealing inverse rate τ\tau. %for different lenghts of the chain. Both the average Eres(τ)E_{\rm res}(\tau) and ρk(τ)\rho_k(\tau) are found to behave logarithmically for large τ\tau, but with different exponents, [Eres(τ)/L]av1/lnζ(τ)[E_{\rm res}(\tau)/L]_{\rm av}\sim 1/\ln^{\zeta}(\tau) with ζ3.4\zeta\approx 3.4, and [ρk(τ)]av1/ln2(τ)[\rho_k(\tau)]_{\rm av}\sim 1/\ln^{2}(\tau). We propose a mechanism for 1/ln2τ1/\ln^2{\tau}-behavior of [ρk]av[\rho_k]_{\rm av} based on the Landau-Zener tunneling theory and on a Fisher's type real-space renormalization group analysis of the relevant gaps. The model proposed shows therefore a paradigmatic example of how an adiabatic quantum computation can become very slow when disorder is at play, even in absence of any source of frustration.Comment: 10 pages, 11 figures; v2: added references, published versio

    Quantum dynamics of propagating photons with strong interactions: a generalized input-output formalism

    Get PDF
    There has been rapid development of systems that yield strong interactions between freely propagating photons in one dimension via controlled coupling to quantum emitters. This raises interesting possibilities such as quantum information processing with photons or quantum many-body states of light, but treating such systems generally remains a difficult task theoretically. Here, we describe a novel technique in which the dynamics and correlations of a few photons can be exactly calculated, based upon knowledge of the initial photonic state and the solution of the reduced effective dynamics of the quantum emitters alone. We show that this generalized "input-output" formalism allows for a straightforward numerical implementation regardless of system details, such as emitter positions, external driving, and level structure. As a specific example, we apply our technique to show how atomic systems with infinite-range interactions and under conditions of electromagnetically induced transparency enable the selective transmission of correlated multi-photon states

    Speeding up critical system dynamics through optimized evolution

    Full text link
    The number of defects which are generated on crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is Tπ/ΔT\sim \pi/\Delta, where Δ\Delta is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action s=TΔs=T\Delta.Comment: 6 pages, 6 figure

    Cell Surface Changes of Hemopoietic Cells During Normal and Leukemic Differentiation: An Immuno-Scanning Electron Microscopy Study

    Get PDF
    Hemopoietic cells display a wide range of cell surface antigens which are either lineage specific or acquired during differentiation. Monoclonal antibodies can be used, in conjunction with colloidal gold markers, to identify under the scanning electron microscopy (SEM) at the single cell level, specific lineage or maturation stages in the hemopoietic bone marrow. Normal bone marrow cells, either gradient separated or purified by immuno-magnetic methods and leukemic cell samples, which can be considered as frozen stages of hemopoietic differentiation, have been studied with this method. Typical cell surface morphologies, which characterize immature progenitor cells and cells committed or differentiated towards the lymphoid, myeloid, erythroid and megakaryocytic lineage have been identified. Correlations between cell surface features and some hemopoietic cells functions have been attempted on the basis of these findings

    Breakdown of the adiabatic limit in low dimensional gapless systems

    Full text link
    It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally submitted version

    One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide\u2013alkyne click reaction sequence

    Get PDF
    We have developed an efficient conversion of amino iron oxides to carbohydrate and protein derived nanoparticles with highly conserved bioactivity through a combination of diazo transfer and azide\u2013alkyne click technolog

    Antioxidant properties of agri-food byproducts and specific boosting effects of hydrolytic treatments

    Get PDF
    Largely produced agri\u2010food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant\u2010derived byproducts. 2,2\u2010Diphenyl\u20101\u2010picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin\u2010rich pecan nut shell and grape pomace. UV\u2010Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non\u2010active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri\u2010food byproducts for application as antioxidant additives in functional
    corecore