Realizing systems that support robust, controlled interactions between
individual photons is an exciting frontier of nonlinear optics. To this end,
one approach that has emerged recently is to leverage atomic interactions to
create strong and spatially non-local interactions between photons. In
particular, effective interactions have been successfully created via
interactions between atoms excited to Rydberg levels. Here, we investigate an
alternative approach, in which atomic interactions arise via their common
coupling to photonic crystal waveguides. This technique takes advantage of the
ability to separately tailor the strength and range of interactions via the
dispersion engineering of the structure itself, which can lead to qualitatively
new types of phenomena. As an example, we discuss the formation of correlated
transparency windows, in which photonic states of a certain number and shape
selectively propagate through the system. Through this technique, we show in
particular that one can create molecular-like potentials that lead to molecular
bound states of photon pairs