1,036 research outputs found

    Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    Full text link
    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Young modulus of the coating. The models that we have developed and validated are important for the design of oscillating micro-mirrors with high quality factor and, consequently, low thermal noise. Such devices are useful in general for high sensitivity sensors, and in particular for experiments of quantum opto-mechanics

    Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system

    Full text link
    Measuring a weak force is an important task for micro-mechanical systems, both when using devices as sensitive detectors and, particularly, in experiments of quantum mechanics. The optimal strategy for resolving a weak stochastic signal force on a huge background (typically given by thermal noise) is a crucial and debated topic, and the stability of the mechanical resonance is a further, related critical issue. We introduce and analyze the parametric control of the optical spring, that allows to stabilize the resonance and provides a phase reference for the oscillator motion, yet conserving a free evolution in one quadrature of the phase space. We also study quantitatively the characteristics of our micro opto-mechanical system as detector of stochastic force for short measurement times (for quick, high resolution monitoring) as well as for the longer term observations that optimize the sensitivity. We compare a simple, naive strategy based on the evaluation of the variance of the displacement (that is a widely used technique) with an optimal Wiener-Kolmogorov data analysis. We show that, thanks to the parametric stabilization of the effective susceptibility, we can more efficiently implement Wiener filtering, and we investigate how this strategy improves the performance of our system. We finally demonstrate the possibility to resolve stochastic force variations well below 1% of the thermal noise

    An ultra-low dissipation micro-oscillator for quantum opto-mechanics

    Full text link
    Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio

    Correlated Component Analysis for diffuse component separation with error estimation on simulated Planck polarization data

    Get PDF
    We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributions to uncertainties on the component maps and on the CMB power spectra. For the Planck polarization case they are found to be subdominant compared to noise.Comment: 17 pages, accepted in MNRA

    Harmonic damped oscillators with feedback. A Langevin study

    Full text link
    We consider a system in direct contact with a thermal reservoir and which, if left unperturbed, is well described by a memory-less equilibrium Langevin equation of the second order in the time coordinate. In such conditions, the strength of the noise fluctuations is set by the damping factor, in accordance with the Fluctuation and Dissipation theorem. We study the system when it is subject to a feedback mechanism, by modifying the Langevin equation accordingly. Memory terms now arise in the time evolution, which we study in a non-equilibrium steady state. Two types of feedback schemes are considered, one focusing on time shifts and one on phase shifts, and for both cases we evaluate the power spectrum of the system's fluctuations. Our analysis finds application in feedback cooled oscillators, such as the Gravitational Wave detector AURIGA.Comment: 17 page

    Dynamical two-mode squeezing of thermal fluctuations in a cavity opto-mechanical system

    Full text link
    We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity opto-mechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing enhanced squeezing effect surpassing the stationary 3dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum opto-mechanical modes

    Frequency noise cancellation in optomechanical systems for ponderomotive squeezing

    Full text link
    Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P\'{e}rot cavity with a micro-mechanical mirror.Comment: 11 pages, 9 figures. Physical explanation expanded. Modified figure

    Estimating the spectral indices of correlated astrophysical foregrounds by a second-order statistical approach

    Get PDF
    We present the first tests of a new method, the Correlated Component Analysis (CCA) based on second-order statistics, to estimate the mixing matrix, a key ingredient to separate astrophysical foregrounds superimposed to the Cosmic Microwave Background (CMB). In the present application, the mixing matrix is parameterized in terms of the spectral indices of Galactic synchrotron and thermal dust emissions, while the free-free spectral index is prescribed by basic physics, and is thus assumed to be known. We consider simulated observations of the microwave sky with angular resolution and white stationary noise at the nominal levels for the PLANCK satellite, and realistic foreground emissions, with a position dependent synchrotron spectral index. We work with two sets of PLANCK frequency channels: the low frequency set, from 30 to 143 GHz, complemented with the Haslam 408 MHz map, and the high frequency set, from 217 to 545 GHz. The concentration of intense free-free emission on the Galactic plane introduces a steep dependence of the spectral index of the global Galactic emission with Galactic latitude, close to the Galactic equator. This feature makes difficult for the CCA to recover the synchrotron spectral index in this region, given the limited angular resolution of PLANCK, especially at low frequencies. A cut of a narrow strip around the Galactic equator (|b|<3 deg), however, allows us to overcome this problem. We show that, once this strip is removed, the CCA allows an effective foreground subtraction, with residual uncertainties inducing a minor contribution to errors on the recovered CMB power spectrum.Comment: 9 pages, 5 figures and 1 table accepted by MNRA

    Control of Recoil Losses in Nanomechanical SiN Membrane Resonators

    Get PDF
    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 10710^7, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures

    Calibrated quantum thermometry in cavity optomechanics

    Full text link
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in peculiarly quantum states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sidebands asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure
    • …
    corecore