16 research outputs found

    Performance of wild-serbian ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor

    Get PDF
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system

    Innovation of Strategies and Challenges for Fungal Nanobiotechnology

    No full text
    WOS: 000402033300003Nanotechnology involves the study and use of materials under the 100 nm scale, exploiting the different physiochemical properties exhibited by these materials at the nanoscale level. Microorganisms are the best model and role of action for the nano/biotechnological applications. This technology has become increasingly important for the biotechnology and the related sectors. Promising applications have been already employed in the areas of drug delivery systems using bioactive nanoencapsulation, biosensors to detect and quantify pathogens, chemical and organic compounds, alteration of food compositions, and high-performance sensors and film to preserve fruits and vegetables. Moreover, the taste of food and food safety can be improved by new nano-materials from the microbiological sources. The huge benefits from this technology have led to increases in the market investments in nanoscience and nanoproducts in several areas
    corecore